asymptotics of work distributions in driven langevin
play

Asymptotics of work distributions in driven Langevin systems - PowerPoint PPT Presentation

Asymptotics of work distributions in driven Langevin systems Andreas Engel, Sascha von Egan-Krieger Institute for Physics / Statistical Physics Carl von Ossietzky University Oldenburg http://www.statphys.uni-oldenburg.de/ Motivation


  1. Asymptotics of work distributions in driven Langevin systems Andreas Engel, Sascha von Egan-Krieger Institute for Physics / Statistical Physics Carl von Ossietzky University Oldenburg http://www.statphys.uni-oldenburg.de/

  2. Motivation fluctuating nano-machines large deviation properties ← → stochastic thermodynamics tails of distributions 0.18 hist P(W) P(W) 0.16 e − β W P(W) 0.14 Here: 0.12 asymptotics of P ( W ) 0.1 improving estimates for ∆ F from 0.08 0.06 e − β ∆ F = � e − βW � 0.04 0.02 0 −4 −2 0 2 4 6 8 10 12 W Aim: Combine analytical information on the tail of P ( W ) with the histogram.

  3. Basic equations Langevin dynamics � t 1 � P ( x 0 ) = e − βV 0( x 0) 2 x = − V ′ ( x, t ) + dt ˙ ˙ β ξ ( t ) , , W [ x ( · )] = V ( x ( t ) , t ) Z 0 0 Transformation of probability x ( t 1)= x 1 dx 0 � � � e − βV 0( x 0) P ( W ) = dx 1 D x ( · ) p [ x ( · ) | x 0 , x 1 ] δ ( W − W [ x ( · )]) Z 0 x (0)= x 0 x ( t 1)= x 1 dx 0 dq � � � � D x ( · ) e − βS [ x ( · ) ,q ] = dx 1 Z 0 4 π/β x (0)= x 0 Stochastic action t 1 S [ x ( · ) , q ] = V 0 ( x 0 ) + 1 dt [1 V ] − i � x + V ′ ) 2 + iq ˙ [ ... ] = ˜ 2( ˙ 2 qW L ( ˙ x, x, t, q ) 2 0

  4. Method of optimal fluctuation Contraction principle: The probability of an unlikely event is dominated by the probability of its most probable cause. Here: Tails of P ( W ) are dominated by ¯ x ( · ) maximizing p [ x ( · )] under the constraint W [¯ x ( · )] = W . Formally: β → ∞ and saddle-point calculation of integrals. e − βS [¯ x ( · ) , ¯ q ] P ( W ) = (1 + O (1 /β )) � Z 0 R Q ( t 1 ) /β Includes contributions from the optimal trajectory and its neighbourhood.

  5. Specific features of the present case Euler-Lagrange equation: � � ∂ ˜ x − ∂ ˜ ∂ ˜ ∂ ˜ t =0 − V ′ d L L L L ∂x = 0 , 0 ( x 0 ) = 0 , = 0 � � dt ∂ ˙ ∂ ˙ x ∂ ˙ x � � t = t 1 One optimal trajectory ¯ x ( t ; W ) for each value of W x ( t ; W ) quantifies balance between “unlikeliness” in x 0 and ξ ( t ) ¯ Fluctuation determinant Q ( t 1 ) : V ′′ ˙ V ′′ + ( ˙ q ) ˙ Q + 2 ¯ ¨ ¯ x − ¯ V ′ ) ¯ V ′′′ ] Q = 0 Q + [(2 − i ¯ ¯ ˙ boundary conditions: Q ( t = 0) = 1 , Q ( t = 0) = 0 Constraint: Omit fluctuations violating the constraint � − 1 ˙ � t 1 � t 1 0 dt ′ ˙ δ 2 ¯ � V ′ (¯ V ′ (¯ x ( t ′ ) , t ′ ) S R = 0 dt x ( t ) , t ) δx ( t ) δx ( t ′ )

  6. First example: The sliding parabola 40 V 0 V ( x, t ) = ( x − t ) 2 V 1 35 2 30 25 Exact solution: V 20 15 − β ( W − ( t 1 − 1+ e − t 1))2 � 10 β 4( t 1 − 1+ e − t 1) P ( W ) = 2 π 2( t 1 − 1 + e − t 1 ) e 5 0 −10 −5 0 5 10 15 20 25 30 x Asymptotic estimate: 2(2 t + e − t − e t − t 1 ) − W (2 − e − t − e t − t 1 ) x = 1 S = ( W − ( t 1 + e − t 1 − 1)) 2 ¯ ¯ 2( t 1 + e − t 1 − 1) 4( t 1 + e − t 1 − 1) 0 = ¨ Q + 2 ˙ ˙ Q, Q (0) = 1 , Q (0) = 0 Q ( t 1 ) = 1 S = − 1 2 δ ′′ ( t − t ′ ) + 1 δ 2 ¯ 2 δ ( t − t ′ ) R = 2( t 1 − 1 + e − t 1 ) S − 1 = − 2 θ ( t − t ′ ) sinh( t − t ′ ) + e t − t ′ δ 2 ¯ V ′ ≡ − 1 ˙ ,

  7. Second example: The breathing parabola 40 25 V 0 60 20 V ( x, t ) = k ( t ) V 1 15 35 2 x 2 10 40 5 30 0 −5 20 P ( W ) = ??? 25 −10 0 20 40 60 80 100 ψ 0 V 20 10 � µ = iq − 9 / 4 → ELE is a 15 −20 8 6 Sturm-Liouville problem 10 −40 4 2 5 0 infinitly many minima of S [ x ( · )] −60 0 20 40 60 80 100 0 0 0.5 1 1.5 2 2.5 3 −20 −15 −10 −5 0 5 10 15 20 x µ 5 1 k ( t ) = 1 + t 0 � x = ± ¯ − W g ( t ) −5 ln P P ( W ) ∼ e β h ( µ 0) W −10 √− W −15 −7 −6 −5 −4 −3 −2 −1 0 W

  8. Improving the ∆ F estimate 1.4 −0.9 1.2 −1.0 ∆ F −1.1 1.0 −1.2 0.8 −1.3 P 100 400 700 1000 n 0.6 0.4 0.2 0.0 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 W

  9. Third example: The Blickle experiment (Phys. Rev. Lett. 96 , 070603 (2006)) V ( x, t ) = Ae − κ ( x − a ) + B ( t )( x − a ) D 0 D ( x ) = 1 + R/x � x = − D ( x ) V ′ ( x, t ) + D ′ ( x ) + ˙ 2 D ( x ) ξ ( t ) 16500 experimental values of W 0.20 1.0 0.5 1 � 2 ∆ F � x + D ( x ) V ′ ( x, t ) − D ′ ( x ) 0.15 L ( x, ˙ x, t ) = ˙ 0.0 4 D ( x ) −0.5 P 0.10 50 100 150 200 x − D ′ n x 2 + (1 − iq ) D ˙ V ′ + .... 0 = ¨ 2 D ˙ 0.05 Determine ¯ S numerically, no prefactor yet. 0.00 −5 0 5 10 15 W

  10. Summary • Analytical expressions for the asymptotics of work distributions in driven Langevin systems. • Method of optimal fluctuation corresponding to contraction principle of large deviation theory. • May improve ∆ F estimates from the Jarzynski equation if histogram and asymptotics overlap.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend