asymptotics for fermi curves of electric and magnetic
play

Asymptotics for Fermi curves of electric and magnetic periodic - PowerPoint PPT Presentation

Asymptotics for Fermi curves of electric and magnetic periodic fields Gustavo de Oliveira UBC July 2009 Outline Introduction New results Comments on the proof Lattice is a lattice in R 2 : For example = Z 2 . Periodic


  1. Asymptotics for Fermi curves of electric and magnetic periodic fields Gustavo de Oliveira UBC – July 2009

  2. Outline Introduction New results Comments on the proof

  3. Lattice ◮ Γ is a lattice in R 2 : For example Γ = Z 2 .

  4. Periodic potentials ◮ A 1 , A 2 and V are functions from R 2 to R periodic with respect to Γ . ◮ A := ( A 1 , A 2 ) is the magnetic potential. ◮ V is the electric potential.

  5. Periodic potentials ◮ A 1 , A 2 and V are functions from R 2 to R periodic with respect to Γ . ◮ A := ( A 1 , A 2 ) is the magnetic potential. ◮ V is the electric potential.

  6. Periodic potentials ◮ A 1 , A 2 and V are functions from R 2 to R periodic with respect to Γ . ◮ A := ( A 1 , A 2 ) is the magnetic potential. ◮ V is the electric potential.

  7. Periodic potentials ◮ A 1 , A 2 and V are functions from R 2 to R periodic with respect to Γ . ◮ A := ( A 1 , A 2 ) is the magnetic potential. ◮ V is the electric potential.

  8. Hamiltonian ◮ Hamiltonian H = ( i ∇ + A ) 2 + V acting on L 2 ( R 2 ) , where ∇ is the gradient on R 2 . ◮ Spectrum of H is continuous: H has no eigenfunctions in L 2 ( R 2 ) .

  9. Hamiltonian ◮ Hamiltonian H = ( i ∇ + A ) 2 + V acting on L 2 ( R 2 ) , where ∇ is the gradient on R 2 . ◮ Spectrum of H is continuous: H has no eigenfunctions in L 2 ( R 2 ) .

  10. Translational symmetry ◮ But H commutes with translations: for all γ ∈ Γ , HT γ = T γ H where T γ : ϕ ( x ) �→ ϕ ( x + γ ) .

  11. Bloch theory ◮ Hence there are simultaneous eigenvectors for { H and T γ for all γ ∈ Γ } H ϕ n , k = E n ( k ) ϕ n , k , T γ ϕ n , k = e ik · γ ϕ n , k ϕ n , k ( · + γ ) = for all γ ∈ Γ , where k ∈ R 2 and n ∈ { 1 , 2 , 3 , . . . } .

  12. Bloch theory ◮ Hence there are simultaneous eigenvectors for { H and T γ for all γ ∈ Γ } H ϕ n , k = E n ( k ) ϕ n , k , T γ ϕ n , k = e ik · γ ϕ n , k ϕ n , k ( · + γ ) = for all γ ∈ Γ , where k ∈ R 2 and n ∈ { 1 , 2 , 3 , . . . } .

  13. Bloch theory ◮ Hence there are simultaneous eigenvectors for { H and T γ for all γ ∈ Γ } H ϕ n , k = E n ( k ) ϕ n , k , T γ ϕ n , k = e ik · γ ϕ n , k ϕ n , k ( · + γ ) = for all γ ∈ Γ , where k ∈ R 2 and n ∈ { 1 , 2 , 3 , . . . } .

  14. Bloch theory ◮ Equivalently, if we define H k := e − ik · x H e ik · x = ( i ∇ + A − k ) 2 + V , we may consider the k -family of problems ψ n , k ∈ L 2 ( R 2 / Γ) . H k ψ n , k = E n ( k ) ψ n , k for ◮ The spectrum of H k is discrete: E 1 ( k ) ≤ E 2 ( k ) ≤ · · · ≤ E n ( k ) ≤ · · ·

  15. Bloch theory ◮ Equivalently, if we define H k := e − ik · x H e ik · x = ( i ∇ + A − k ) 2 + V , we may consider the k -family of problems ψ n , k ∈ L 2 ( R 2 / Γ) . H k ψ n , k = E n ( k ) ψ n , k for ◮ The spectrum of H k is discrete: E 1 ( k ) ≤ E 2 ( k ) ≤ · · · ≤ E n ( k ) ≤ · · ·

  16. Bloch theory ◮ Equivalently, if we define H k := e − ik · x H e ik · x = ( i ∇ + A − k ) 2 + V , we may consider the k -family of problems ψ n , k ∈ L 2 ( R 2 / Γ) . H k ψ n , k = E n ( k ) ψ n , k for ◮ The spectrum of H k is discrete: E 1 ( k ) ≤ E 2 ( k ) ≤ · · · ≤ E n ( k ) ≤ · · ·

  17. Bloch theory ◮ Equivalently, if we define H k := e − ik · x H e ik · x = ( i ∇ + A − k ) 2 + V , we may consider the k -family of problems ψ n , k ∈ L 2 ( R 2 / Γ) . H k ψ n , k = E n ( k ) ψ n , k for ◮ The spectrum of H k is discrete: E 1 ( k ) ≤ E 2 ( k ) ≤ · · · ≤ E n ( k ) ≤ · · ·

  18. Bloch theory ◮ The function k �→ E n ( k ) is periodic with respect to the dual lattice Γ # := { b ∈ R 2 | b · γ ∈ 2 π Z for all γ ∈ Γ } . ◮ This framework is preserved if we complexify: k ∈ C 2 . A 1 , A 2 , V ∈ C and

  19. Bloch theory ◮ The function k �→ E n ( k ) is periodic with respect to the dual lattice Γ # := { b ∈ R 2 | b · γ ∈ 2 π Z for all γ ∈ Γ } . ◮ This framework is preserved if we complexify: k ∈ C 2 . A 1 , A 2 , V ∈ C and

  20. Fermi curve ◮ The real lifted Fermi curve: F λ, R := { k ∈ R 2 | E n ( k ) = λ � for some n ≥ 1 } = { k ∈ R 2 | ( H k − λ ) ϕ = 0 for some ϕ ∈ D H k \ { 0 }} . ◮ Without loss of generality � � A − A → A , V − λ → V , k → k + A . ◮ The complex lifted Fermi curve: F := { k ∈ C 2 | H k ϕ = 0 � for some ϕ ∈ D H k \ { 0 }} .

  21. Fermi curve ◮ The real lifted Fermi curve: F λ, R := { k ∈ R 2 | E n ( k ) = λ � for some n ≥ 1 } = { k ∈ R 2 | ( H k − λ ) ϕ = 0 for some ϕ ∈ D H k \ { 0 }} . ◮ Without loss of generality � � A − A → A , V − λ → V , k → k + A . ◮ The complex lifted Fermi curve: F := { k ∈ C 2 | H k ϕ = 0 � for some ϕ ∈ D H k \ { 0 }} .

  22. Fermi curve ◮ The real lifted Fermi curve: F λ, R := { k ∈ R 2 | E n ( k ) = λ � for some n ≥ 1 } = { k ∈ R 2 | ( H k − λ ) ϕ = 0 for some ϕ ∈ D H k \ { 0 }} . ◮ Without loss of generality � � A − A → A , V − λ → V , k → k + A . ◮ The complex lifted Fermi curve: F := { k ∈ C 2 | H k ϕ = 0 � for some ϕ ∈ D H k \ { 0 }} .

  23. Fermi curve ◮ The real lifted Fermi curve: F λ, R := { k ∈ R 2 | E n ( k ) = λ � for some n ≥ 1 } = { k ∈ R 2 | ( H k − λ ) ϕ = 0 for some ϕ ∈ D H k \ { 0 }} . ◮ Without loss of generality � � A − A → A , V − λ → V , k → k + A . ◮ The complex lifted Fermi curve: F := { k ∈ C 2 | H k ϕ = 0 � for some ϕ ∈ D H k \ { 0 }} .

  24. Fermi curve: properties The Fermi curve is: 1. Analytic: F = { k ∈ C 2 | F ( k ) = 0 } , � where F ( k ) is an analytic function on C 2 . 2. Periodic with respect to Γ # : F + b = � � for all b ∈ Γ # . F 3. Gauge invariant: � F is invariant under A → A + ∇ Ψ .

  25. Fermi curve: properties The Fermi curve is: 1. Analytic: F = { k ∈ C 2 | F ( k ) = 0 } , � where F ( k ) is an analytic function on C 2 . 2. Periodic with respect to Γ # : F + b = � � for all b ∈ Γ # . F 3. Gauge invariant: � F is invariant under A → A + ∇ Ψ .

  26. Fermi curve: properties The Fermi curve is: 1. Analytic: F = { k ∈ C 2 | F ( k ) = 0 } , � where F ( k ) is an analytic function on C 2 . 2. Periodic with respect to Γ # : F + b = � � for all b ∈ Γ # . F 3. Gauge invariant: � F is invariant under A → A + ∇ Ψ .

  27. The free Hamiltonian ◮ Set A = 0 and V = 0. Then { e ib · x | b ∈ Γ # } is a basis of L 2 ( R 2 / Γ) of eigenfunctions of H k : H k e ib · x = ( i ∇ − k ) 2 e ib · x = ( − b − k ) 2 e ib · x =: N b ( k ) e ib · x = N b , 1 ( k ) N b , 2 ( k ) e ib · x where N b ,ν ( k ) := ( k 1 + b 1 ) + i ( − 1 ) ν ( k 2 + b 2 ) .

  28. The free Hamiltonian ◮ Set A = 0 and V = 0. Then { e ib · x | b ∈ Γ # } is a basis of L 2 ( R 2 / Γ) of eigenfunctions of H k : H k e ib · x = ( i ∇ − k ) 2 e ib · x = ( − b − k ) 2 e ib · x =: N b ( k ) e ib · x = N b , 1 ( k ) N b , 2 ( k ) e ib · x where N b ,ν ( k ) := ( k 1 + b 1 ) + i ( − 1 ) ν ( k 2 + b 2 ) .

  29. The free Hamiltonian ◮ Set A = 0 and V = 0. Then { e ib · x | b ∈ Γ # } is a basis of L 2 ( R 2 / Γ) of eigenfunctions of H k : H k e ib · x = ( i ∇ − k ) 2 e ib · x = ( − b − k ) 2 e ib · x =: N b ( k ) e ib · x = N b , 1 ( k ) N b , 2 ( k ) e ib · x where N b ,ν ( k ) := ( k 1 + b 1 ) + i ( − 1 ) ν ( k 2 + b 2 ) .

  30. The free Hamiltonian ◮ Set A = 0 and V = 0. Then { e ib · x | b ∈ Γ # } is a basis of L 2 ( R 2 / Γ) of eigenfunctions of H k : H k e ib · x = ( i ∇ − k ) 2 e ib · x = ( − b − k ) 2 e ib · x =: N b ( k ) e ib · x = N b , 1 ( k ) N b , 2 ( k ) e ib · x where N b ,ν ( k ) := ( k 1 + b 1 ) + i ( − 1 ) ν ( k 2 + b 2 ) .

  31. The free Hamiltonian ◮ Set A = 0 and V = 0. Then { e ib · x | b ∈ Γ # } is a basis of L 2 ( R 2 / Γ) of eigenfunctions of H k : H k e ib · x = ( i ∇ − k ) 2 e ib · x = ( − b − k ) 2 e ib · x =: N b ( k ) e ib · x = N b , 1 ( k ) N b , 2 ( k ) e ib · x where N b ,ν ( k ) := ( k 1 + b 1 ) + i ( − 1 ) ν ( k 2 + b 2 ) .

  32. The free Hamiltonian ◮ Set A = 0 and V = 0. Then { e ib · x | b ∈ Γ # } is a basis of L 2 ( R 2 / Γ) of eigenfunctions of H k : H k e ib · x = ( i ∇ − k ) 2 e ib · x = ( − b − k ) 2 e ib · x =: N b ( k ) e ib · x = N b , 1 ( k ) N b , 2 ( k ) e ib · x where N b ,ν ( k ) := ( k 1 + b 1 ) + i ( − 1 ) ν ( k 2 + b 2 ) .

  33. The free Fermi curve ◮ Define N b := { k ∈ C 2 | ( k 1 + b 1 ) 2 + ( k 2 + b 2 ) 2 = 0 } , N ν ( b ) := { k ∈ C 2 | ( k 1 + b 1 ) + i ( − 1 ) ν ( k 2 + b 2 ) = 0 } . Hence, for A = 0 and V = 0, F = { k ∈ C 2 | N b ( k ) = 0 � for some b ∈ Γ # } � � = N b = N ν ( b ) . b ∈ Γ # b ∈ Γ # ν ∈{ 1 , 2 }

  34. The free Fermi curve ◮ Define N b := { k ∈ C 2 | ( k 1 + b 1 ) 2 + ( k 2 + b 2 ) 2 = 0 } , N ν ( b ) := { k ∈ C 2 | ( k 1 + b 1 ) + i ( − 1 ) ν ( k 2 + b 2 ) = 0 } . Hence, for A = 0 and V = 0, F = { k ∈ C 2 | N b ( k ) = 0 � for some b ∈ Γ # } � � = N b = N ν ( b ) . b ∈ Γ # b ∈ Γ # ν ∈{ 1 , 2 }

  35. The free Fermi curve ◮ Define N b := { k ∈ C 2 | ( k 1 + b 1 ) 2 + ( k 2 + b 2 ) 2 = 0 } , N ν ( b ) := { k ∈ C 2 | ( k 1 + b 1 ) + i ( − 1 ) ν ( k 2 + b 2 ) = 0 } . Hence, for A = 0 and V = 0, F = { k ∈ C 2 | N b ( k ) = 0 � for some b ∈ Γ # } � � = N b = N ν ( b ) . b ∈ Γ # b ∈ Γ # ν ∈{ 1 , 2 }

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend