optimization introduction
play

Optimization (Introduction) : IR IR f ( x ) ID Optimization " - PowerPoint PPT Presentation

Optimization (Introduction) : IR IR f ( x ) ID Optimization " 112 FCI ) : IR NE Goal: Find the minimizer ! that minimizes the objective (cost) function " ! : " - fatal * Unconstrained Optimization x :


  1. Optimization (Introduction)

  2. : IR → IR f ( x ) ID Optimization " → 112 FCI ) : IR NE Goal: Find the minimizer ! ∗ that minimizes the objective (cost) function " ! : ℛ " → ℛ - fatal * Unconstrained Optimization x : arg yi±yf /H¥nfGY or -

  3. Optimization Goal: Find the minimizer ! ∗ that minimizes the objective (cost) function " ! : ℛ " → ℛ Constrained Optimization ( = min f Cx ) f- ( x * ) X . hi G) ⇐ o → equality s . t → inequality :# so gig in

  4. Unconstrained Optimization " ! t÷ • What if we are looking for a maximizer ! ∗ ? " ! ∗ = max # = main ( - fan ) f(x* )

  5. Calculus problem: maximize the rectangle area subject to perimeter constraint area ✓ - Max Area max ! ∈ ℛ ! → perimeter ① constraint - - perimeter ③ dzflo } ② ditto di .dz#Lwithoutpericoust)-s/di--dz=l0-sA=IooT -

  6. mata -100 [ ()*+ = ' $ ' % Area ( violates " t.a.pe ' % perimeter ' $ -f#¥Lr -*)./*0*) = 2(' $ + ' % ) . D ' % D ' $

  7. " sizes A :÷÷÷ILi € ¥ ⇐ ¥ ¥ .dz ) pig :i÷÷÷ :* * i ; . dies d ' ( d , .dz )

  8. What is the optimal solution? (1D) IT ! " ∗ = min ! " max " , - (First-order) Necessary condition • gifted , points (Second-order) Sufficient condition " txt ) > o → x * minimum is f " ( x* ) co - X * maximum is f-

  9. Does the solution exists? Local or global solution? "°*^# IEEE a

  10. Example (1D) miufcx ) X Consider the function " ! = 7 ! 8 − 7 " 9 − 11 - : + 40- . Find the stationary point and check the sufficient condition 100 max * lstarder necessary condition : - 3¥ : ' ( -4¥ ' f- x ) I - 22 × +40 - 6 - 4 - 2 2 4 6 min ; . - 100 ! ⇒ x3 - E - 22 × +40=0 f) G) = o x =/ ! -25 - 200 solutions ⇒ * min 4 ' ' as .ae#-aftIfa7::ii:i:.::.oIEhin * 2nd order condition : , ' 25 ) +10-2220 " f- 5) =3 ( f- ( Min )

  11. Types of optimization problems ! " ∗ = min 5: nonlinear, continuous ! " and smooth " Gradient-free methods Evaluate ! " If Gradient (first-derivative) methods Evaluate ! " , !′ " • Second-derivative methods Evaluate ! " , !′ " , !′′ " off

  12. ::¥:*"i÷ I Optimization in 1D: Huh fK¥ , if 'm Golden Section Search • Similar idea of bisection method for root finding • Needs to bracket the minimum inside an interval • Required the function to be unimodal / / 4 I A function ": ℛ → ℛ is unimodal on an interval [4, 5] fix . ü There is a unique ! ∗ ∈ [4, 5] such that "(! ∗ ) is the minimum in ✓ [4, 5] OI ü For any - E , - : ∈ [4, 5] with - E < - : * - : < ! ∗ ⟹ "(- E ) > "(- : ) - r § - E > ! ∗ ⟹ "(- E ) < "(- : ) - § - r -

  13. ( FIT ¥7 fa ta 5 5 $ $ Fb Fb 5 5 ' ' 5 ( 5 5 % % 5 ( B H $ • H $ B H ' H ' H % H ( H % H ( A B. G * a *2 × * * 22 G + * + + F F Ifif@HsxIIfIf1xisxIXttE-La.XzTfI.t [ 4 , b ]

  14. K£7 Propose the point asks - t . IT e- at Cl - E) hk x , Xz XI -- at Chic / Xz HI - C) hk The h$ ⇐ ( b - a) , Ill at the start 1 : I i 1 ← Ehk'#£E)hI f , sfz f , > f , or [ a. xD !¥% , 9k Ex , , b ] iteration * hkti-E.hn T.ee/-fEoery Em !i hatch interval gets aFI¥EIb . .ch#..EfET;db " ' ' - Ehr ( I - E) hrs I ¥t%h* , - E - 12=0.6-187 - ) Cte - t I

  15. 12-0.618-1 KI interval Caio ) - - Cb - a) h . . → x , = at ( t - E) ho I I ! hofz-t-GD-qh.pe#qs.--cyh-/ I , - → x*E[ a ,Xz ] if f , sfz : " I µ h-# b=X2 9k → fz - fi xz=x , a : ④ TTbtf+ III. Ethan . . t¥h¥¥/ ( , f , - FCK ) → x*E Ex , , b ] f , > fz if : ¥+,¥¥¥h µ Ej÷¥÷nn-f=fz That , fz=f(Xz ) Xz= At Chu -

  16. Golden Section Search

  17. Golden Section Search What happens with the length of the interval after one iteration? ℎ ! = ( ℎ " Or in general: ℎ #$! = ( ℎ # Hence the interval gets reduced by ) (for bisection method to solve nonlinear equations, ( =0.5) For recursion: ( ℎ ! = (1 − () ℎ " ( ( ℎ " = (1 − () ℎ " ( % = (1 − () ) = .. 012

  18. → the < tot Golden Section Search II HE ha evaluate FG ) ① I • Derivative free method! - Chien ef÷=Y÷ - hee - ¥ • Slow convergence: - - - T re I → |@ ILE | lim = 0.618 D = 1 (EFG@4D HIGJ@DK@GH@) @ I I→K - - • Only one function evaluation per iteration cheap , Xi

  19. Example → ho A = - to = 20 TT - to b h , - = ? = 12.36 = I ko he 0.618 × 20 → ,

  20. Yeti = Xk t h Newton’s Method Using Taylor Expansion, we can approximate the function " with a quadratic n¥near" function about - M = I " - ≈ " - M + " N - M (- − - M ) + E : " N ′ - M (- − - M ) : And we want to find the minimum of the quadratic function using the first-order necessary condition * = O stationary → point Go ) tyzf - to )¢= of ' ' Go ) Cx ' 5- sin :÷±÷÷÷ µ ÷¥¥÷7¥ -

  21. Newton’s Method i • Algorithm: " 3 = starting guess " 456 = " 4 − !′ " 4 /!′′ " 4 - - - - • Convergence: • Typical quadratic convergence • Local convergence (start guess close to solution) • May fail to converge, or converge to a maximum or point of inflection

  22. Newton’s Method (Graphical Representation) get A µ .¥i tho ) HA ' • IED I l l l #i → X3 Xl Xz Xo X sequence of opt . approx I quad using .

  23. Example Consider the function " - = 4 - 9 + 2 - : + 5 - + 40 - If we use the initial guess - M = 2 , what would be the value of - after one - iteration of the Newton’s method? x , = ? ' G) = 12 × 2+4 × +5 f- " G) = 24 X t 4 f- - CMg¥£¥t# - ft - fifty h - - = = - ¥2 -1 × 1--0.82697 X , = Xo th = 2 X , →

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend