asymptotic expansions under degeneracy
play

Asymptotic Expansions under degeneracy Yuji Sakamoto and Nakahiro - PowerPoint PPT Presentation

Asymptotic Expansions under degeneracy Yuji Sakamoto and Nakahiro Yoshida Hiroshima International Univ. and University of Tokyo SAPS4 , Universit e du Maine , Le Mans, France December 19-20, 2002 1 Stationary Ergodic Diffusion Model


  1. Asymptotic Expansions under degeneracy Yuji Sakamoto and Nakahiro Yoshida Hiroshima International Univ. and University of Tokyo SAPS4 , Universit´ e du Maine , Le Mans, France December 19-20, 2002 1

  2. Stationary Ergodic Diffusion Model ✷ Observations : X = ( X t ) t ∈ [0 ,T ] , dim( X t ) = d , Continuous θ ∈ Θ ⊂ R p , ✷ Parameter : dim( θ ) = p , Θ : open bounded convex ✷ Model : dX t = V 0 ( X t , θ ) dt + V ( X t ) dw t , X 0 ∼ ν θ V 0 : R d × Θ → R d , V : R d → R d ⊗ R r w = ( w t ) : r -dimensional standard Wiener process ν θ : stationary distribution with a positive density dν θ dx ✷ Log-Likelihood : � T � T ℓ ( θ ) = log dν θ 0 ( V V ′ ) − 1 ( X t , θ ) dX t − 1 0 V ′ 0 V ′ 0 ( V V ′ ) − 1 V 0 ( X t , θ ) dt dx + 2 θ T : ( X t ) t ∈ [0 ,T ] → ˆ ˆ ✷ Estimator : θ T ∈ Θ ✷ Asymptotics : T → ∞ 2

  3. Estimation for unknown parameter θ in drift function V 0 ✷ Parameter of interest : θ = ( θ 1 , . . . , θ p ) ∈ Θ ⊂ R p , dX t = V 0 ( X t , θ ) dt + V ( X t ) dw t , X 0 ∼ ν θ , t ∈ [0 , T ]. ✷ True value : θ 0 ∈ Θ. θ ( c ) θ ( c ) δ a ℓ ( c ) (ˆ T ) = 0, a = 1 , . . . , p , δ a = ∂/∂θ a . ✷ Conditional MLE ˆ : T � T � T 0 ( V V ′ ) − 1 ( X t , θ ) dX t − 1 ℓ ( c ) ( θ ) = 0 V ′ 0 V ′ 0 ( V V ′ ) − 1 V 0 ( X t , θ ) dt. 2 δ a = ∂/∂θ a . ✷ (Exact) MLE ˆ δ a ℓ (ˆ θ T : θ T ) = 0, a = 1 , . . . , p , ℓ ( θ ) = log dν θ dx ( X 0 ) + ℓ ( c ) ( θ ) . θ ψ θ ψ ✷ M -estimator ˆ ψ a ; (ˆ T : T ) = 0, a = 1 , . . . , p , for an estimating fuction ψ = ( ψ 1; , . . . , ψ p ; ). 3

  4. Literature on distributional expansion for ergodic diffusion ✷ Second order � Yoshida(1997) : martingale expansion, (global approach) (conditional) MLE, d = 1, p = 1 � Sakamoto-Yoshida(1998) : M -estimator, d = 1, p = 1, Numerical studies on (conditional) MLE for OU, etc � Uchida-Yoshida(2001), (Mykland(1992, 1993)) ✷ Third or higher order � Kusuoka-Yoshida(2000) : ǫ -Markov mixing, (local approach) Diffusion functional having stoch. exp. , arbitrary d , p � S-Y(1998) : third order MLE, arbitrary d , p � S-Y(1999) : representation of expansion, third order M -estimator, arbitrary d , p � S-Y(2000) : under degeneracy � Sakamoto(2000), Kutoyants-Yoshida(2001) 4

  5. Second order expansion of MLE for univariate ergodic diffusion Theorem 1 (Yoshida(P.T.R.F.,1997)). For any θ ∈ Θ ⊂ R , Let X = ( X t ) t ∈ [0 ,T ] be a one-dimensional stationary ergodic diffusion pro- cess satisfying dX t = V 0 ( X t , θ ) dt + dw t with a stationary distribution ν θ given by �� x � n θ ( x ) ν θ ( dx ) = n θ ( x ) = exp 0 2 V 0 ( u, θ ) du −∞ n θ ( u ) dudx, . � ∞ Suppose that sup x ∈ R ∂ x V 0 ( x, θ 0 ) < 0 and that | δ l ∂ j V 0 ( x, θ ) | ≤ C j,l (1 + | x | C j,l ) , ∀ x, θ . Then it holds that √ 1 θ ( c ) T ( A − Bx 2 ) φ ( x ) + ¯ o ( T − 1 / 2 ) , IT (ˆ √ P ( − θ 0 ) ≤ x ) = Φ( x ) + T where I = ν θ 0 (( δV 0 ) 2 ) , A = − ν θ 0 ( δV 0 · k ) / (2 I 3 / 2 ) , B = −{ ν θ 0 ( δV 0 · δ 2 V 0 ) − ν θ 0 ( δV 0 · k ) } / (2 I 3 / 2 ) , � ∞ 2 n θ 0 ( u )(( δV 0 ( u, θ 0 )) 2 − I ( θ 0 )) du. k = − n θ 0 ( x ) − 1 x 5

  6. θ ( c ) Numerical study on expansion of ˆ for OU in S-Y(1998) T 1.0 1.0 0.8 0.8 θ=1 θ=2 T=3, T=3, 0.6 0.6 0.4 0.4 Normal Normal Expansion Expansion 0.2 0.2 MonteCarlo MonteCarlo 0.0 0.0 -4 -2 0 2 4 -4 -2 0 2 4 1.0 1.0 0.8 0.8 θ=1 θ=2 T=6, T=6, 0.6 0.6 0.4 0.4 Normal Normal Expansion Expansion 0.2 MonteCarlo MonteCarlo 0.2 0.0 0.0 -4 -2 0 2 4 -4 -2 0 2 4 6

  7. Third order expansion of MLE for multidimensional diffusion ρ > ( ρ ab ) . Theorem 2 (S-Y(1999)). Let M , γ > 0 , and ˆ Assume For any β ∈ C 2 that [L] , [DM1], [DM2], [DM3] hold true. B (Θ) , let θ ∗ ˆ T = ˆ θ T − β (ˆ θ T ) /T . Moreover assume that the diffusion process X has the geometrically strong mixing property. Then there exist positive constants c, ˜ C, ˜ ǫ such that for any f ∈ E ( M, γ ) √ � � � T (ˆ θ ∗ dy (0) f ( y (0) ) q T, 2 ( y (0) ) CT − (˜ ǫ +2) / 2 , ˆ ρ ab ) + o ( T − 1 ) , � � � ≤ cω ( f, ˜ � E [ f ( T − θ ))] − (1) � � where 1 1 ρ aa ′ ( µ a ′ − ˜ � q T, 2 ( y (0) ) = φ ( y (0) ; ρ ab ) c ∗ abc h abc ( y (0) ; ρ ab ) + β a ′ ) h a ( y (0) ; ρ ab ) 1 + √ √ 6 T T + 1 1 2 T A ∗ ab h ab ( y (0) ; ρ ab ) + 24 T c ∗ abcd h abcd ( y (0) ; ρ ab ) 1 � 72 T c ∗ abc c ∗ def h abcdef ( y (0) ; ρ ab ) + . 7

  8. Coefficients in asymptotic expansion(1) µ a = − 1 β a = β a − ∆ a , abc = − 3Γ ( − 1 / 3) 2 ρ aa ′ ρ bc Γ ( − 1) ( ρ ab ) = ( ρ ab ) − 1 , c ∗ ˜ ρ ab = F a,b , , bc,a ′ , ab,c � A ∗ ab = − τ ab − ρ cd F bcd,a + F ab,cd − F ac,bd − F [ a,c ] , [ b,d ] + 2 F [ ab,c ] ,d + 2 F [ ac,b ] ,d + 4 F [ b,d ] ,ac � + F [ cd,b ] ,a + 2 F [[ b,c ] ,a ] ,d + 2 F [[ b,c ] ,d ] ,a � 1 � 2Γ ( − 1) ce,b Γ ( − 1) ac,e Γ (1) bd,f + Γ ( − 1) cd,e (Γ (1) ab,f + Γ ( − 1) ce,a (Γ (1) bd,f + Γ ( − 1) f,a − Γ (1) fb,a ) + Γ ( − 1) + ρ cd ρ ef bd,f ) d + ρ aa ′ ρ bb ′ ( µ a ′ − ˜ β a ′ )( µ b ′ − ˜ β b ′ ) + 2 ρ aa ′ (∆ c η ∗ a ′ c,b − δ b β a ′ ) , c ∗ abcd = − 12( F [[ a,b ] ,c ] ,d + F [ a,b ] ,cd + F [ ab,c ] ,d ) + 3 F [ a,b ] , [ c,d ] − 4 F abc,d β d ′ − µ d ′ ) + 12 ρ ef (Γ ( − 1) + 12Γ ( − 1 / 3) ab,e + Γ (1) ae,b )Γ ( − 1) ρ dd ′ (˜ cf,d , ab,c [3] ab,c = F ab,c − F [ a,b ] ,c + 1 − α Γ ( α ) b,c = − ρ aa ′ (Γ (1) a ′ c,b + Γ ( − 1) � η ∗ a F [ a,b ] ,c , bc,a ′ ) . 2 ( ab,c ) abcd , and ρ aa ′ ( µ a ′ − ˜ β a ′ ) are functions of F , The coefficients c ∗ abc , A ∗ ab , c ∗ τ , and ∆. 8

  9. Coefficients in asymptotic expansion(2) dν θ 0 dν θ 0 dν θ 0 ∆ a = ρ aa ′ ν θ 0 ( δ a ′ dx ) , τ ab = Cov[ δ a dx ] , dx , δ b F A 1 ,A 2 = ν θ 0 ( B A 1 · B A 2 ) , F A 1 , [ A 2 ,A 3 ] = ν θ 0 ( B A 1 · [ B A 2 · B A 3 ]) , F [ A 1 ,A 2 ] , [ A 3 ,A 4 ] = ν θ 0 ([ B A 1 · B A 2 ] · [ B A 3 · B A 4 ]) , F [[ A 1 ,A 2 ] ,A 3 ] ,A 4 ] = ν θ 0 ([[ B A 1 · B A 2 ] · B A 3 ] · B A 4 ]) , 0 ( V V ′ ) − 1 V 0 ( x, θ ), B A ( x, θ ) = δ a 1 · · · δ a k B ( x, θ ), where B ( x, θ ) = V ′ δ a j = ∂/∂θ a j , A = a 1 · · · a k , [ f ] = − V ′ ∇ G f − ν ( f ) , A G f − ν ( f ) = f − ν ( f ) , d d r ∂ 2 ∂x i + 1 0 ( x, θ 0 ) ∂ k ( x ) V j V i V i � � � A = k ( x ) ∂x i ∂x j 2 i =1 i,j =1 k =1 9

  10. Third order expansion of MLE for CIR model � dX t = ( p − qX t ) dt + r X t dw t , θ = ( p, q ) , Θ = { ( p, q ) : 2 p > r > 0 , q > 0 } 2 q F 1 , 2 = F 2 , 1 = − 1 p F 1 , 1 = r 2 (2 p − r 2 ) , r 2 , F 2 , 2 = qr 2 , 4 q 2 F [1 , 1] , 1 = − r 2 (2 p − r 2 ) 2 , F [1 , 1] , 2 = (2 p − r 2 ) , F [1 , 2] , 1 = F [1 , 2] , 2 = 0 F [2 , 2] , 1 = 1 F [2 , 2] , 2 = − p 8 q r 2 q, F [1 , 1] , [1 , 1] = r 2 (2 p − r 2 ) 3 , F [1 , 1] , [1 , 2] = 0 r 2 q 2 2 F [1 , 1] , [2 , 2] = − r 2 (2 p − r 2 ) q, F [1 , 2] , [1 , 2] = F [1 , 2] , [2 , 2] = 0 F [2 , 2] , [2 , 2] = p 8 q 4 r 2 q 3 , F [[1 , 1] , 1] , 1 = r 2 (2 p − r 2 ) 3 , F [[1 , 1] , 1] , 2 = − r 2 (2 p − r 2 ) 2 F [[1 , 1] , 2] , 1 = F [[1 , 1] , 2] , 2 = F [[1 , 2] , 1] , 1 = F [[1 , 2] , 1] , 2 = 0 F [[1 , 2] , 2] , 1 = F [[1 , 2] , 2] , 2 = F [[2 , 2] , 1] , 1 = F [[2 , 2] , 1] , 2 = 0 1 p F [[2 , 2] , 2] , 1 = − r 2 q 2 , F [[2 , 2] , 2] , 2 = r 2 q 3 , 2 τ 22 = 2 p ∆ 1 =∆ 2 = 0 , τ 11 = 4PolyGamma[1 , 1] , τ 12 = τ 21 = r 2 q, q 2 r 2 . 10

  11. Stochastic Expansion of MLE ˆ θ T ( p = 1 ) MLE ˆ δℓ T (ˆ • θ T θ T ) = 0, δ = ∂/∂θ , : Likelihood eq. • Third order stochastic expansion √ 1 T (ˆ θ T − θ 0 ) = S T ( Z 1 , Z 2 , Z 3 ) + √ R 3 , T T � � 1 z 1 z 2 + 1 υ − 1 ν 3 z 2 S T ( z 1 , z 2 , z 3 ) = z 1 + √ 2¯ 2 ¯ 1 T � 1 � + 1 1 + 3 2 + 1 ν 2 3 ) z 3 ν 3 z 2 1 z 2 + z 1 z 2 2 z 2 6(¯ ν 4 + 3¯ 2¯ 1 z 3 , T υ − 1 υ − 1 where ¯ υ 2 = − 1 ν 3 = 1 ν 4 = 1 T E θ 0 [ δ 2 ℓ T ( θ 0 )], 2 E θ 0 [ δ 3 ℓ T ( θ 0 )], 2 E θ 0 [ δ 4 ℓ T ( θ 0 )], ¯ T ¯ ¯ T ¯ Z 1 = 1 υ − 1 √ ¯ 2 δℓ T ( θ 0 ) , T � � Z 2 = 1 υ − 1 δ 2 ℓ T ( θ 0 ) − E θ 0 [ δ 2 ℓ T ( θ 0 )] √ ¯ , 2 T � � Z 3 = 1 υ − 1 δ 3 ℓ T ( θ 0 ) − E θ 0 [ δ 3 ℓ T ( θ 0 )] √ ¯ . 2 T 11

  12. Derivation of valid distributional asymptotic expansion √ T (ˆ E [ f ( θ T − θ 0 ))] ≈ E [ f ( S T ( Z 1 , Z 2 , Z 3 ))] , S T : stoch. exp., ⇐ (Delta method) � ≈ f ( S T ( z 1 , z 2 , z 3 )) p T ( z 1 , z 2 , z 3 ) dz 1 dz 2 dz 3 , p T : valid asymptotic exp. of ( Z 1 , Z 2 , Z 3 ) � = f ( z 1 + Q T ( z 1 , z 2 , z 3 )) p T ( z 1 , z 2 , z 3 ) dz 1 dz 2 dz 3 S T = z 1 + Q T ( f ( z 1 ) + ∂f ( z 1 ) Q T + 1 � 2 ∂ 2 f ( z 1 ) Q 2 ≈ T ) p T ( z ) dz ⇐ (formal) Taylor’s expansion � � � � Q T p T dz 2 dz 3 + 1 � 2( − ∂ ) 2 = f ( z 1 ) ( − ∂ ) Q T p T dz 2 dz 3 dz 1 ⇐ IBP over R For the validity of p T , the regularity of the distribution of ( Z 1 , Z 2 , Z 3 ) ✷ non-degeneracy of covariance matrix ✷ Cram´ er type condition — non-degeneracy of the Malliavin covariance 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend