signed expansions of minimal weight
play

Signed -expansions of minimal weight Wolfgang Steiner (joint work - PowerPoint PPT Presentation

Signed -expansions of minimal weight Wolfgang Steiner (joint work with Christiane Frougny) LIAFA, CNRS, Universit e Paris 7 Graz, April 18, 2007 Expansions in base 2 Every integer N 0 has an expansion in base 2 K j 2 j = K


  1. Signed β -expansions of minimal weight Wolfgang Steiner (joint work with Christiane Frougny) LIAFA, CNRS, Universit´ e Paris 7 Graz, April 18, 2007

  2. Expansions in base 2 Every integer N ≥ 0 has an expansion in base 2 K ǫ j 2 j = ǫ K · · · ǫ 1 ǫ 0 . � N = j =0 with ǫ j ∈ { 0 , 1 } , which is unique up to leading zeros. If we allow negative digits, then the number of non-zero digits can often be reduced: 7 = 4 + 2 + 1 = 111 . = 100¯ (¯ 1 . = 8 − 1 1 = − 1) Problem: find an expansion of N of minimal weight � K j =0 | ǫ j | (cf. Hamming weight: number of non-zero digits ǫ j , equal to this weight if ǫ j ∈ {− 1 , 0 , 1 } )

  3. Expansions of minimal weight in base 2 Booth (1951), Reitwiesner (1960), . . . : Non-Adjacent Form (NAF) j =0 ǫ j 2 j with Every integer N has a unique expansion N = � K ǫ j ∈ {− 1 , 0 , 1 } such that ǫ j − 1 = ǫ j +1 = 0 if ǫ j � = 0. The weight of this expansion is minimal among all expansions of N in base 2. Dajani, Kraaikamp, Liardet (2006): ergodic properties of the dynamical system associated with the NAF, T : [ − 2 / 3 , 2 / 3) → [ − 2 / 3 , 2 / 3), T ( x ) = 2 x − ⌊ (3 x + 1) / 2 ⌋ 1 , 0 , 1 } ∗ is a signed 2-expansion Heuberger (2004): ǫ K · · · ǫ 1 ǫ 0 ∈ { ¯ of minimal weight if and only if contains none of the factors 11(01) ∗ 1 , 1(0¯ 1) ∗ ¯ 1 , ¯ 1¯ 1(0¯ 1) ∗ ¯ 1 , ¯ 1(01) ∗ 1 . ( A ∗ is the free monoid over the set A , a ∗ = { a } ∗ = { empty word , a , aa , aaa , aaaa , . . . } ) joint digit expansions: Solinas; Grabner, Heuberger, Prodinger

  4. √ β -expansions, β = 1+ 5 2 Greedy β -expansions: Every x ∈ R + has a unique expansion ǫ j β − j = · · · ǫ − 1 ǫ 0 . ǫ 1 ǫ 2 · · · � x = j ∈ Z with ǫ j ∈ { 0 , 1 } , ǫ j − 1 = ǫ j +1 = 0 if ǫ j = 1, which does not terminate with (10) ω = 101010 · · · . β 2 = β + 1 , 100 . = 011 . , 1 . = . 11 Greedy β -expansions are not minimal in weight for ǫ j ∈ {− 1 , 0 , 1 } : 0101001 . = 10¯ 11001 . = 1000¯ 101 . = 10000¯ 10 .

  5. β -expansions of minimal weight x = x 1 · · · x n ∈ A ∗ β is β -heavy if it is not minimal in weight, i.e., if there exists y = y ℓ · · · y r ∈ A ∗ β with r n � � . x 1 · · · x n = y ℓ · · · y 0 . y 1 · · · y r and | y j | < | x j | . j = ℓ j =1 If x 1 · · · x n − 1 and x 2 · · · x n are not β -heavy, x is strictly β -heavy. Theorem √ If β = 1+ 5 , then the set of strictly β -heavy words is 2 1(0100) ∗ 1 ∪ 1(0100) ∗ 0101 ∪ 1(00¯ 10) ∗ ¯ 1 ∪ 1(00¯ 10) ∗ 0¯ 1 ∪ ¯ 1(0¯ 100) ∗ ¯ 1 ∪ ¯ 1(0¯ 100) ∗ 0¯ 10¯ 1 ∪ ¯ 1(0010) ∗ 1 ∪ ¯ 1(0010) ∗ 01 . If · · · ǫ − 1 ǫ 0 ǫ 1 · · · does not contain any of these factors, then · · · ǫ − 1 ǫ 0 . ǫ 1 · · · is a signed β -expansion of minimal weight.

  6. The strictly β -heavy words are the inputs of the following transducer. The outputs are corresponding lighter words (if the path is completed by dashed arrows such that it runs from (0 , 0) to (0 , − 1)). 0 | ¯ 0 | 1 1 − 1 , 1 0 , 0 1 , 1 ¯ 1 | 0 1 | 0 − 1 , 0 − 1 /β, − 1 1 /β, − 1 1 , 0 ¯ 1 | 0 1 | 0 0 | 0 0 | 0 0 | 0 0 | 0 1 | 0 ¯ 1 | 0 0 | ¯ 1 0 | 1 − 1 /β, 0 − 1 , − 1 1 , − 1 1 /β, 0 1 | 0 1 | 0 ¯ ¯ 1 | 0 1 | 0 0 | ¯ 1 0 | 1 0 , − 1 − 1 /β, − 2 1 /β, − 2 0 , − 1 a | b → ( s ′ , δ ′ ) : s ′ = β s + a − b , δ ′ = δ + | b | − | a | ( s , δ )

  7. The strictly β -heavy words are the inputs of the following transducer. The outputs are corresponding lighter words (if the path is completed by dashed arrows such that it runs from (0 , 0) to (0 , − 1)). 011 . = 100 . 0 | ¯ 0 | 1 1 − 1 , 1 0 , 0 1 , 1 ¯ 1 | 0 1 | 0 − 1 , 0 − 1 /β, − 1 1 /β, − 1 1 , 0 ¯ 1 | 0 1 | 0 0 | 0 0 | 0 0 | 0 0 | 0 ¯ 1 | 0 1 | 0 0 | ¯ 1 0 | 1 − 1 /β, 0 − 1 , − 1 1 , − 1 1 /β, 0 1 | 0 1 | 0 ¯ ¯ 1 | 0 1 | 0 0 | ¯ 1 0 | 1 0 , − 1 − 1 /β, − 2 1 /β, − 2 0 , − 1 a | b → ( s ′ , δ ′ ) : s ′ = β s + a − b , δ ′ = δ + | b | − | a | ( s , δ )

  8. The strictly β -heavy words are the inputs of the following transducer. The outputs are corresponding lighter words (if the path is completed by dashed arrows such that it runs from (0 , 0) to (0 , − 1)). 01(0100) ∗ 1 . = 10(000¯ 1) ∗ 0 . 0 | ¯ 0 | 1 1 − 1 , 1 0 , 0 1 , 1 ¯ 1 | 0 1 | 0 − 1 , 0 − 1 /β, − 1 1 /β, − 1 1 , 0 ¯ 1 | 0 1 | 0 0 | 0 0 | 0 0 | 0 0 | 0 ¯ 1 | 0 1 | 0 0 | ¯ 1 0 | 1 − 1 /β, 0 − 1 , − 1 1 , − 1 1 /β, 0 1 | 0 1 | 0 ¯ ¯ 1 | 0 1 | 0 0 | ¯ 1 0 | 1 0 , − 1 − 1 /β, − 2 1 /β, − 2 0 , − 1 a | b → ( s ′ , δ ′ ) : s ′ = β s + a − b , δ ′ = δ + | b | − | a | ( s , δ )

  9. The sequences x 1 | y 1 , . . . , x n | y n with x 1 · · · x n , y 1 · · · y n ∈ { ¯ 1 , 0 , 1 } ∗ (not containing a factor 11 or ¯ 1¯ 1) such that . x 1 · · · x n = . y 1 · · · y n are recognized by the redundancy automaton (transducer) 1 | ¯ ¯ 1 , 0 | 0 , 1 | 1 1 | 0 , 0 | ¯ 0 | 1 , ¯ 1 1 | 0 0 ¯ 0 | ¯ 1 | 0 , 0 | 1 1 , 1 | 0 ¯ 1 | ¯ 1 , 0 | 0 , 1 | 1 1 | ¯ ¯ 1 , 0 | 0 , 1 | 1 − 1 /β − 1 1 1 /β 1 | 0 , 0 | ¯ 0 | 1 , ¯ 1 ¯ 1 | 0 1 | ¯ 1 | 1 1 1 | ¯ ¯ 1 | ¯ ¯ 1 , 0 | 0 , 1 | 1 1 , 0 | 0 , 1 | 1 1 | ¯ 1 | 1 ¯ 1 ¯ 1 | ¯ 1 , 0 | 0 , 1 | 1 ¯ 1 | ¯ 1 , 0 | 0 , 1 | 1 1 | 0 , 0 | ¯ 1 − 1 /β 2 1 /β 2 − β β 0 | 1 , ¯ 1 | 0 , 0 | ¯ 1 | 0 1 0 | 1 , ¯ 1 | 0 1 | 0 , 0 | ¯ a | b → s ′ : s ′ = β s + a − b 0 | 1 , ¯ 1 1 | 0 s x j | y j → s j , 1 ≤ j ≤ n , then s j = x 1 · · · x j . − y 1 · · · y j . , If s 0 = 0, s j − 1 and . x 1 · · · x n = . y 1 · · · y n if and only if s n = 0.

  10. Theorem √ For β = 1+ 5 , the signed β -expansions of minimal weight are 2 given by the following automaton, where all states are terminal. 1 1 0 0 1 0 0 ¯ 1 1 0 ¯ 0 1 0 0 ¯ 0 1 ¯ 1

  11. Transformation providing signed β -expansions of minimal √ weight, β = 1+ 5 2 T : [ − β/ 2 , β/ 2) → [ − β/ 2 , β/ 2) , T ( x ) = β x − ⌊ x + 1 / 2 ⌋ − 1 / 2 − β/ 2 0 β/ 2 1 / 2 Proposition If x ∈ [ β/ 2 , β/ 2) and x j = ⌊ T j − 1 ( x ) + 1 / 2 ⌋ , then x = . x 1 x 2 · · · is a signed β -expansion of minimal weight avoiding the factors 11 , 101 , 1¯ 1 , 10¯ 1 , 100¯ 1 and their opposites.

  12. Proof of the proposition. Recall that T ( x ) = β x − ⌊ x + 1 / 2 ⌋ and x j = ⌊ T j − 1 ( x ) + 1 / 2 ⌋ . If x j = 1, then T j − 1 ( x ) ∈ [1 / 2 , β/ 2) = [ . (010) ω , . (100) ω ), T j ( x ) ∈ [ β/ 2 − 1 , β 2 / 2 − 1) = [ − 1 / (2 β 2 ) , 1 / (2 β )) , x j +1 = 0 , T j +1 ( x ) ∈ [ − 1 / (2 β ) , 1 / 2) , x j +2 = 0 , T j +2 ( x ) ∈ [ − 1 / 2 , β/ 2) , x j +3 ∈ { 0 , 1 } . Hence 11, 101, 1¯ 1, 10¯ 1 and 100¯ 1 are avoided, thus the strictly β -heavy words 1(0100) ∗ 1, 1(0100) ∗ 0101, 1(00¯ 10) ∗ ¯ 1, 1(00¯ 10) ∗ 0¯ 1 are avoided. The same is true for the opposite words. Remark. Heuberger (2004) excluded (for the Fibonacci numeration system) the factor 1001 instead of 100¯ 1. This can be achieved by � β 2 +1 � − β 2 β 2 β 2 2 β x + 1 � � β 2 +1 = . (1000) ω . T ( x ) = β x − on β 2 +1 , , β 2 +1 2

  13. Markov chain of digits Let T ( x ) = β x − ⌊ x + 1 / 2 ⌋ , and I 000 , I 001 , I 01 , I 1 as follows I 1 I 01 I 001 I 000 I 001 I 01 I 1 [ ) [ ) [ ) [ ) [ ) [ ) [ ) − β − 1 − 1 1 1 1 1 1 β − − 2 β 2 2 β 2 2 β 2 2 2 β 2 β 2 2 2 The sequence of random variables ( X k ) k ≥ 0 defined by Pr [ X 0 = j 0 , . . . , X k = j k ] = λ ( { x ∈ [ − β/ 2 , β/ 2) : x ∈ I j 0 , T ( x ) ∈ I j 1 , . . . , T k ( x ) ∈ I j k } ) /β = λ ( I j 0 ∩ T − 1 ( I j 1 ) ∩ · · · ∩ T − k ( I j k )) /β (where λ denotes the Lebesgue measure) is a Markov chain since T ( I 000 ) = I 000 ∪ I 001 = T ( I 1 ) , T ( I 001 ) = I 01 , T ( I 01 ) = I 1 and T ( x ) is linear on each I j .

  14. I 1 I 01 I 001 I 000 I 001 I 01 I 1 [ ) [ ) [ ) [ ) [ ) [ ) [ ) − β − 1 − 1 1 1 1 1 1 β − − 2 2 β 2 β 2 2 β 2 2 β 2 2 β 2 2 2 The matrix of transition probabilites is  1 /β 2  1 /β 0 0 0 0 1 0   ( Pr [ X k = j | X k − 1 = i ]) i , j ∈{ 000 , 001 , 01 , 1 } =   0 0 0 1   2 /β 2 1 /β 3 0 0 the stationary distribution vector is (2 / 5 , 1 / 5 , 1 / 5 , 1 / 5). Therefore Pr [ X k = 1] = λ ( { x ∈ [ − β/ 2 , β/ 2) : T k ( x ) ∈ I 1 } → 1 / 5 , i.e., the expected number of non-zero digits in a signed β -expansion of minimal weight of length n is n / 5 + O (1). (cf. greedy β -expansions n / ( β 2 + 1), base 2 minimal expansions n / 3)

  15. Fibonacci numeration system Let F 0 = 1, F 1 = 2, F j = F j − 1 + F j − 2 . Then every integer N ≥ 0 has a unique F -expansion n � N = ǫ j F n − j = � ǫ 1 · · · ǫ n � F j =1 with ǫ j ∈ { 0 , 1 } and ǫ j − 1 = ǫ j +1 = 0 if ǫ j = 1. 1 , 0 , 1 } ∗ is F -heavy if there exists y ℓ · · · y n ∈ { ¯ x 1 · · · x n ∈ { ¯ 1 , 0 , 1 } ∗ such that � x 1 · · · x n � F = � y ℓ · · · y n � F and � n j = ℓ | y j | < � n j =1 | x j | . �· · · 1¯ 10 · · · � F = �· · · 001 · · · � F , but �· · · 1¯ 1 � F = �· · · 01 � F . Theorem √ The F-heavy words are exactly the β -heavy words for β = 1+ 5 , 2 i.e. a word is a signed F-expansion of minimal weight if and only if it is a signed β -expansion of minimal weight.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend