asymptotic expansions for the profile of random trees
play

Asymptotic expansions for the profile of random trees 80000 60000 - PowerPoint PPT Presentation

Asymptotic expansions for the profile of random trees 80000 60000 U k ( n ) 40000 20000 0 10 15 20 25 30 35 40 45 k Henning Sulzbach ALEA in Europe, Vienna, 10 October 2017 with Zakhar Kabluchko (Mnster) and Alexander Marynych


  1. Asymptotic expansions for the profile of random trees 80000 60000 U k ( n ) 40000 20000 0 10 15 20 25 30 35 40 45 k Henning Sulzbach ALEA in Europe, Vienna, 10 October 2017 with Zakhar Kabluchko (Münster) and Alexander Marynych (Kyev)

  2. Trees of interest • data structures • analysis of algo. • real-world networks Comparison-based: binary ( m -ary) search trees, random recursive trees, preferential attachment trees Multidimensional: quadtrees, K -d trees Digital: digital search trees, tries Trees are flat (i.e. logarithmic) and wide .

  3. Quantities of interest Global quantities: • typical depths and distances, • maximal depths and distances, • total pathlength (sum over all node depths), • mode and width. Local quantities: • degree distribution, • fringe subtrees. Put simply, the profile .

  4. Outline 1. One-split branching random walks 2. Profile of binary search trees: a summary 3. Main result: an asymptotic profile expansion

  5. Outline 1. One-split branching random walks 2. Profile of binary search trees: a summary 3. Main result: an asymptotic profile expansion

  6. The binary search tree Input: numbers 0 . 6 , 0 . 9 , 0 . 3 , 0 . 7 , 0 . 5 , 0 . 8 , 0 . 1 , 0 . 2

  7. The binary search tree Input: numbers 0 . 6 , 0 . 9 , 0 . 3 , 0 . 7 , 0 . 5 , 0 . 8 , 0 . 1 , 0 . 2 .6

  8. The binary search tree Input: numbers 0 . 6 , 0 . 9 , 0 . 3 , 0 . 7 , 0 . 5 , 0 . 8 , 0 . 1 , 0 . 2 .6 .9

  9. The binary search tree Input: numbers 0 . 6 , 0 . 9 , 0 . 3 , 0 . 7 , 0 . 5 , 0 . 8 , 0 . 1 , 0 . 2 .6 .3 .9

  10. The binary search tree Input: numbers 0 . 6 , 0 . 9 , 0 . 3 , 0 . 7 , 0 . 5 , 0 . 8 , 0 . 1 , 0 . 2 .6 .3 .9 .7

  11. The binary search tree Input: numbers 0 . 6 , 0 . 9 , 0 . 3 , 0 . 7 , 0 . 5 , 0 . 8 , 0 . 1 , 0 . 2 .6 .3 .9 .5 .7

  12. The binary search tree Input: numbers 0 . 6 , 0 . 9 , 0 . 3 , 0 . 7 , 0 . 5 , 0 . 8 , 0 . 1 , 0 . 2 .6 .3 .9 .5 .7 .8

  13. The binary search tree Input: numbers 0 . 6 , 0 . 9 , 0 . 3 , 0 . 7 , 0 . 5 , 0 . 8 , 0 . 1 , 0 . 2 .6 .3 .9 .1 .5 .7 .8

  14. The binary search tree Input: numbers 0 . 6 , 0 . 9 , 0 . 3 , 0 . 7 , 0 . 5 , 0 . 8 , 0 . 1 , 0 . 2 .6 .3 .9 .1 .5 .7 .2 .8

  15. The binary search tree Input: numbers 0 . 6 , 0 . 9 , 0 . 3 , 0 . 7 , 0 . 5 , 0 . 8 , 0 . 1 , 0 . 2 .6 .3 .9 .1 .5 .7 .2 .8 Model: Use iid unif[0 , 1] random variables U 1 , U 2 , U 3 , . . .

  16. The binary search tree - a Markov chain

  17. The binary search tree - a Markov chain

  18. The binary search tree - a Markov chain

  19. The binary search tree - a Markov chain

  20. The binary search tree - a Markov chain

  21. The binary search tree - a Markov chain

  22. The binary search tree - a Markov chain

  23. The binary search tree - a Markov chain

  24. The binary search tree - a Markov chain

  25. The binary search tree - a Markov chain

  26. The binary search tree - a Markov chain X n ( k ) = # { nodes with depth k } , k ≥ 0 , U n ( k ) = # { boxes with depth k } , k ≥ 0 .

  27. The binary search tree - a Markov chain X n = (1 , 2 , 4 , 6 , 5 , 0 , 0 , . . . ) U n = (0 , 0 , 0 , 2 , 7 , 10 , 0 , . . . )

  28. The binary search tree - three simulations 10 8 7 6 5 4 3 2 1 0 20 30 40 50 60 70 n = 10 10 , heights between 87 and 91.

  29. The binary search tree - Logplot 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 10 20 30 40 50 60 70 80 90 100 n = 10 10 , heights between 87 and 91.

  30. The random recursive tree 1/2

  31. The random recursive tree 1/2 1/2

  32. The random recursive tree 1/3 1/3 1/3

  33. The random recursive tree 1/4 1/4 1/4 1/4 1/4

  34. The random recursive tree 1/4 1/4

  35. The random recursive tree 1/4 1/4

  36. The random recursive tree

  37. The random recursive tree - three simulations n = 10 10 , heights between 57 and 62.

  38. The plane-oriented recursive tree

  39. The plane-oriented recursive tree

  40. The plane-oriented recursive tree

  41. The plane-oriented recursive tree

  42. The plane-oriented recursive tree

  43. The plane-oriented recursive tree weight of v : 1 + d v degree profile: j − 2

  44. One-split branching random walks Input: random point process ζ on Z

  45. One-split branching random walks Input: random point process ζ on Z Z n ( k ) : # of particles at k at time n Z 0 ( k ) = δ 0 , k -3 -2 -1 0 1 2 3 4 Z 0 = ( . . . , 0 , 0 , 1 ∗ , 0 , 0 , . . . ) Assumptions: • 1 ≤ ζ ( Z ) ≤ C , P ( ζ ( Z ) > 1) > 0 and ζ has bounded support, • P ( ζ ( c Z ) < ζ ( Z )) > 0 for all c ≥ 2. (wlog)

  46. One-split branching random walks Input: random point process ζ on Z Z n ( k ) : # of particles at k at time n Z 0 ( k ) = δ 0 , k -3 -2 -1 0 1 2 3 4 Z 0 = ( . . . , 0 , 0 , 1 ∗ , 0 , 0 , . . . ) Assumptions: • 1 ≤ ζ ( Z ) ≤ C , P ( ζ ( Z ) > 1) > 0 and ζ has bounded support, • P ( ζ ( c Z ) < ζ ( Z )) > 0 for all c ≥ 2. (wlog)

  47. One-split branching random walks Input: random point process ζ on Z Z n ( k ) : # of particles at k at time n Z 0 ( k ) = δ 0 , k -3 -2 -1 0 1 2 3 4 ζ = ( . . . , 0 , 1 , 0 ∗ , 0 , 1 , 1 , 0 . . . ) Z 0 = ( . . . , 0 , 0 , 1 ∗ , 0 , 0 , . . . ) Assumptions: • 1 ≤ ζ ( Z ) ≤ C , P ( ζ ( Z ) > 1) > 0 and ζ has bounded support, • P ( ζ ( c Z ) < ζ ( Z )) > 0 for all c ≥ 2. (wlog)

  48. One-split branching random walks Input: random point process ζ on Z Z n ( k ) : # of particles at k at time n Z 0 ( k ) = δ 0 , k -3 -2 -1 0 1 2 3 4 Z 1 = ( . . . , 0 , 1 , 0 ∗ , 0 , 1 , 1 , 0 , . . . ) Assumptions: • 1 ≤ ζ ( Z ) ≤ C , P ( ζ ( Z ) > 1) > 0 and ζ has bounded support, • P ( ζ ( c Z ) < ζ ( Z )) > 0 for all c ≥ 2. (wlog)

  49. One-split branching random walks Input: random point process ζ on Z Z n ( k ) : # of particles at k at time n Z 0 ( k ) = δ 0 , k -3 -2 -1 0 1 2 3 4 Z 1 = ( . . . , 0 , 1 , 0 ∗ , 0 , 1 , 1 , 0 , . . . ) Assumptions: • 1 ≤ ζ ( Z ) ≤ C , P ( ζ ( Z ) > 1) > 0 and ζ has bounded support, • P ( ζ ( c Z ) < ζ ( Z )) > 0 for all c ≥ 2. (wlog)

  50. One-split branching random walks Input: random point process ζ on Z Z n ( k ) : # of particles at k at time n Z 0 ( k ) = δ 0 , k -3 -2 -1 0 1 2 3 4 ζ = ( . . . , 0 , 1 , 0 , 0 ∗ , 0 , 1 , 0 , . . . ) Z 1 = ( . . . , 0 , 1 , 0 ∗ , 0 , 1 , 1 , 0 , . . . ) Assumptions: • 1 ≤ ζ ( Z ) ≤ C , P ( ζ ( Z ) > 1) > 0 and ζ has bounded support, • P ( ζ ( c Z ) < ζ ( Z )) > 0 for all c ≥ 2. (wlog)

  51. One-split branching random walks Input: random point process ζ on Z Z n ( k ) : # of particles at k at time n Z 0 ( k ) = δ 0 , k -3 -2 -1 0 1 2 3 4 Z 2 = ( . . . , 0 , 1 , 1 ∗ , 0 , 0 , 1 , 1 , 0 . . . ) Assumptions: • 1 ≤ ζ ( Z ) ≤ C , P ( ζ ( Z ) > 1) > 0 and ζ has bounded support, • P ( ζ ( c Z ) < ζ ( Z )) > 0 for all c ≥ 2. (wlog)

  52. One-split branching random walks Input: random point process ζ on Z Z n ( k ) : # of particles at k at time n Z 0 ( k ) = δ 0 , k -3 -2 -1 0 1 2 3 4 Z 2 = ( . . . , 0 , 1 , 1 ∗ , 0 , 0 , 1 , 1 , 0 . . . ) Assumptions: • 1 ≤ ζ ( Z ) ≤ C , P ( ζ ( Z ) > 1) > 0 and ζ has bounded support, • P ( ζ ( c Z ) < ζ ( Z )) > 0 for all c ≥ 2. (wlog)

  53. One-split branching random walks Input: random point process ζ on Z Z n ( k ) : # of particles at k at time n Z 0 ( k ) = δ 0 , k -3 -2 -1 0 1 2 3 4 ζ = ( . . . , 0 , 1 , 0 ∗ , 0 , 0 , 1 , 0 . . . ) Z 2 = ( . . . , 0 , 1 , 1 ∗ , 0 , 0 , 1 , 1 , 0 . . . ) Assumptions: • 1 ≤ ζ ( Z ) ≤ C , P ( ζ ( Z ) > 1) > 0 and ζ has bounded support, • P ( ζ ( c Z ) < ζ ( Z )) > 0 for all c ≥ 2. (wlog)

  54. One-split branching random walks Input: random point process ζ on Z Z n ( k ) : # of particles at k at time n Z 0 ( k ) = δ 0 , k -3 -2 -1 0 1 2 3 4

  55. One-split branching random walks Input: random point process ζ on Z Z n ( k ) : # of particles at k at time n Z 0 ( k ) = δ 0 , k -3 -2 -1 0 1 2 3 4 Z 3 = ( . . . , 0 , 2 , 0 ∗ , 0 , 0 , 2 , 1 , 0 . . . ) Assumptions: • 1 ≤ ζ ( Z ) ≤ C , P ( ζ ( Z ) > 1) > 0 and ζ has bounded support, • P ( ζ ( c Z ) < ζ ( Z )) > 0 for all c ≥ 2. (wlog)

  56. One-split branching random walks BST: ζ = ( . . . , 0 , 0 ∗ , 2 , 0 , . . . ) = 2 δ 1 RRT: ζ = ( . . . , 0 , 1 ∗ , 1 , 0 , . . . ) = δ 0 + δ 1 PORT: ζ = ( . . . , 0 , 2 ∗ , 1 , 0 , . . . ) = 2 δ 0 + δ 1 Note: ζ is deterministic.

  57. Outline 1. One-split branching random walks 2. Profile of binary search trees: a summary 3. Main result: an asymptotic profile expansion

  58. Binary search tree - a rough picture η 1 η ( x ) = x − x log( x / 2) − 1 , α − = 0 . 37 . . . , α + = 4 . 31 . . . , x 0 α − α + 2 η (2) = 1 . For k = α log n + o (log n ) , as n → ∞ , U n ( k ) = n η ( α )+ o (1) , α − < α < α + . As n → ∞ , D n − 2 log n d √ 2 log n → N and Height ∼ α + log n , Fill-up level ∼ α − log n . Devroye ’86 -’88

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend