hsien kuei hwang academia sinica taiwan joint with m
play

Hsien-Kuei Hwang Academia Sinica, Taiwan (joint with M. Drmota, M. - PowerPoint PPT Presentation

PROFILE OF RANDOM RECURSIVE TREES AND RANDOM BINARY SEARCH TREES Hsien-Kuei Hwang Academia Sinica, Taiwan (joint with M. Drmota, M. Fuchs, R. Neininger) April 26, 2004 Profile of random recursive trees and random binary search trees, INRIA,


  1. A CONNECTION d = # of nodes at k left branches away from the root in X n,k random BSTs of n − 1 keys by ( i ) the usual transformation from a multiway tree to a binary tree (first branch → left, sibling → right) and ( ii ) the bijection between binary increasing trees and binary search trees. Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.11/64

  2. A CONNECTION d = # of nodes at k left branches away from the root in X n,k random BSTs of n − 1 keys by ( i ) the usual transformation from a multiway tree to a binary tree (first branch → left, sibling → right) and ( ii ) the bijection between binary increasing trees and binary search trees. It suffices to look at BSTs. Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.11/64

  3. A CONNECTION d = # of nodes at k left branches away from the root in X n,k random BSTs of n − 1 keys by ( i ) the usual transformation from a multiway tree to a binary tree (first branch → left, sibling → right) and ( ii ) the bijection between binary increasing trees and binary search trees. It suffices to look at BSTs. But ( i ) it’s much simpler to start from the better structured recursive trees; ( ii ) behaviors not identical in all ranges. Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.11/64

  4. SUMMARY OF MAIN PHENOMENA k Write throughout α n,k = and lim n α n,k = α . log n Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.12/64

  5. SUMMARY OF MAIN PHENOMENA k Write throughout α n,k = and lim n α n,k = α . log n ➠ E ( X n,k ) unimodal, but V ( X n,k ) bimodal Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.12/64

  6. SUMMARY OF MAIN PHENOMENA k Write throughout α n,k = and lim n α n,k = α . log n ➠ E ( X n,k ) unimodal, but V ( X n,k ) bimodal X n,k d ➠ If 0 ≤ α < e , then − → X α . E ( X n,k ) Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.12/64

  7. SUMMARY OF MAIN PHENOMENA k Write throughout α n,k = and lim n α n,k = α . log n ➠ E ( X n,k ) unimodal, but V ( X n,k ) bimodal X n,k d ➠ If 0 ≤ α < e , then − → X α . E ( X n,k ) X n,k m ➠ If 0 ≤ α ≤ 1 , then − → X α . E ( X n,k ) Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.12/64

  8. SUMMARY OF MAIN PHENOMENA ➠ For k = o ( log n ) , X n,k − E ( X n,k ) m − → N ( 0, 1 ) . � V ( X n,k ) Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.13/64

  9. SUMMARY OF MAIN PHENOMENA ➠ For k = o ( log n ) , X n,k − E ( X n,k ) m − → N ( 0, 1 ) . � V ( X n,k ) ➠ If k = log n + o ( log n ) and | k − log n | → ∞ , then X n,k − E ( X n,k ) m → X ′ − 1 . � V ( X n,k ) Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.13/64

  10. SUMMARY OF MAIN PHENOMENA ➠ For k = o ( log n ) , X n,k − E ( X n,k ) m − → N ( 0, 1 ) . � V ( X n,k ) ➠ If k = log n + o ( log n ) and | k − log n | → ∞ , then X n,k − E ( X n,k ) m → X ′ − 1 . � V ( X n,k ) ➠ For k = log n + O ( 1 ) , the limit law of X n,k − E ( X n,k ) does not exist. � V ( X n,k ) Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.13/64

  11. RECURRENCE OF X n,k Y d = X uniform [ 1,n − 1 ] ,k − 1 + X ∗ X n,k n − uniform [ 1,n − 1 ] ,k Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.14/64

  12. RECURRENCE OF X n,k Y d = X uniform [ 1,n − 1 ] ,k − 1 + X ∗ X n,k n − uniform [ 1,n − 1 ] ,k Three proofs: ( i ) bijection conditioned on the size of the subtree rooted at 2; ( ii ) above-mentioned transformation; ( iii ) algebraic � n − 1 � � � ( j − 1 )! · · · ( j s − 1 )! 1 d = X n,k s ! j 1 , . . . , j s ( n − 1 )! � �� � s ≥ 1 j 1 + ··· + j s = n − 1 P ( s subtrees have sizes j 1 ,...,j s ) × ( X j 1 ,k − 1 + · · · + X j s ,k − 1 ) . Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.14/64

  13. EXPECTED VALUE OF X n,k Meir, Moon (1978) (implicit): for 0 ≤ k < n Stirling1 ( n, k + 1 ) µ n,k := E ( X n,k ) = ; ( n − 1 )! also in Moon (1974) and Dondajewski, Szyma´ nski (1982). Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.15/64

  14. EXPECTED VALUE OF X n,k Meir, Moon (1978) (implicit): for 0 ≤ k < n Stirling1 ( n, k + 1 ) µ n,k := E ( X n,k ) = ; ( n − 1 )! also in Moon (1974) and Dondajewski, Szyma´ nski (1982). By known estimates for Stirling first numbers (H. 1995) ( log n ) k � � �� 1 µ n,k = 1 + O , k log n Γ ( 1 + log n ) k ! uniformly for 0 ≤ k ≤ K log n . Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.15/64

  15. A ROUGH DESCRIPTION OF SHAPE The root has about log n subtrees, Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.16/64

  16. A ROUGH DESCRIPTION OF SHAPE The root has about log n subtrees, each of them “attracting” about the same number of new keys. Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.16/64

  17. A ROUGH DESCRIPTION OF SHAPE The root has about log n subtrees, each of them “attracting” about the same number of new keys. Also log µ n,k → α ( 1 − log α ) for 0 ≤ α ≤ K , log n Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.16/64

  18. A ROUGH DESCRIPTION OF SHAPE The root has about log n subtrees, each of them “attracting” about the same number of new keys. Also log µ n,k → α ( 1 − log α ) for 0 ≤ α ≤ K , and log n µ n,k → ∞ when 1 ≤ k ≤ e log n − 1 2 log log n + O ( 1 ) . Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.16/64

  19. TWO COROLLARIES The estimate for µ n,k also implies ☞ an LLT for the depth; see Devroye (1988), Szyma´ nski (1990), Mahmoud (1991) for CLT, and Dobrow, Smythe (1996) for Poisson approximation; Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.17/64

  20. TWO COROLLARIES The estimate for µ n,k also implies ☞ an LLT for the depth; see Devroye (1988), Szyma´ nski (1990), Mahmoud (1991) for CLT, and Dobrow, Smythe (1996) for Poisson approximation; ☞ that the expected height is bounded above by E ( H n ) ≤ e log n − 1 2 log log n + O ( 1 ) . (Roughly, the range when µ n,k → ∞ .) Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.17/64

  21. SECOND MOMENT OF X n,k Meir, Moon (1978) (implicit) � Stirling1 ( n, k + j + 1 ) � 2j � E ( X 2 n,k ) = ; j ( n − 1 )! 0 ≤ j ≤ k see also van der Hofstad et al. (2002); Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.18/64

  22. SECOND MOMENT OF X n,k Meir, Moon (1978) (implicit) � Stirling1 ( n, k + j + 1 ) � 2j � E ( X 2 n,k ) = ; j ( n − 1 )! 0 ≤ j ≤ k see also van der Hofstad et al. (2002); and for k = O ( 1 ) ( log n ) 2k − 1 V ( X n,k ) ∼ ( 2k − 1 )( k − 1 )! 2 . Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.18/64

  23. VARIANCE OF X n,k : MIDDLE RANGE Uniformly for 1 ≤ k ≤ 2 log n − K √ log n V ( X n,k ) ∼ φ ( α n,k ) µ 2 n,k , where Γ ( x + 1 ) 2 φ ( x ) := 2 ) Γ ( 2x + 1 ) − 1. ( 1 − x A full asymptotic expansion can be derived. Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.19/64

  24. φ ( 0 ) = φ ( 1 ) = φ ′ ( 1 ) = 0 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.20/64

  25. MORE PRECISE ESTIMATES  ( log n ) 2k − 1    ( 2k − 1 )( k − 1 )! 2 , if k = o ( log n ) ,   V ( X n,k ) ∼ � 2 � ( log n ) k − 1 if t n := k − log n   p ( t n ) ,    k ! = o ( log n ) , where � � � � 2 − π 2 2ζ ( 3 ) + 4γ + π 2 t 2 p ( t n ) := n − 3 ( 1 − γ ) − 6 t n + 6 2γ 2 − 6γ + 8 − 2ζ ( 3 )( 1 − γ ) − π 2 γ 2 − 2γ + 3 − π 4 � � 360 . 6 Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.21/64

  26. MORE PRECISE ESTIMATES  ( log n ) 2k − 1    ( 2k − 1 )( k − 1 )! 2 , if k = o ( log n ) ,   V ( X n,k ) ∼ � 2 � ( log n ) k − 1 if t n := k − log n   p ( t n ) ,    k ! = o ( log n ) , where � � � � 2 − π 2 2ζ ( 3 ) + 4γ + π 2 t 2 p ( t n ) := n − 3 ( 1 − γ ) − 6 t n + 6 2γ 2 − 6γ + 8 − 2ζ ( 3 )( 1 − γ ) − π 2 γ 2 − 2γ + 3 − π 4 � � 360 . 6 φ ′′ ( 1 ) = 2 − π 2 2 6 Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.21/64

  27. BIMODALITY OF VARIANCE WHEN α = 1 n 2 k = log n + O ( √ log n ) V ( X n,k ) ≍ ( log n ) 3 , min Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.22/64

  28. BIMODALITY OF VARIANCE WHEN α = 1 n 2 k = log n + O ( √ log n ) V ( X n,k ) ≍ ( log n ) 3 , min 1 ≤ k<n V ( X n,k ) ∼ 12 − π 2 n 2 · max ( log n ) 2 . 12πe Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.22/64

  29. BIMODALITY OF VARIANCE WHEN α = 1 n 2 k = log n + O ( √ log n ) V ( X n,k ) ≍ ( log n ) 3 , min 1 ≤ k<n V ( X n,k ) ∼ 12 − π 2 n 2 · max ( log n ) 2 . 12πe p ( t n ) ( log n ) 2 · µ 2 Note that V ( X n,k ) ∼ n,k . Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.22/64

  30. BIMODALITY OF VARIANCE WHEN α = 1 n 2 k = log n + O ( √ log n ) V ( X n,k ) ≍ ( log n ) 3 , min 1 ≤ k<n V ( X n,k ) ∼ 12 − π 2 n 2 · max ( log n ) 2 . 12πe p ( t n ) ( log n ) 2 · µ 2 Note that V ( X n,k ) ∼ n,k . More precise estimates can be derived. Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.22/64

  31. E ( X 500,k ) AND V ( X 500,k ) 1000 800 600 400 200 0 2 4 6 8 10 12 14 Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.23/64

  32. A GLOBAL DESCRIPTION OF V ( X n,k )   2α ( 1 − log α ) , if 0 ≤ α ≤ 2 ;  log V ( X n,k ) 4 − α log 4, if 2 ≤ α ≤ 4 ; → log n   if 4 ≤ α ≤ K. α ( 1 − log α ) , Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.24/64

  33. A GLOBAL DESCRIPTION OF V ( X n,k )   2α ( 1 − log α ) , if 0 ≤ α ≤ 2 ;  log V ( X n,k ) 4 − α log 4, if 2 ≤ α ≤ 4 ; → log n   if 4 ≤ α ≤ K. α ( 1 − log α ) ,  ≍ µ 2  if 0 ≤ α < 2 ; n,k ,  ≫ µ 2 Thus V ( X n,k ) if 2 ≤ α ≤ 4 ; n,k , µ n,k ,   ≍ µ n,k , if 4 < α ≤ K. Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.24/64

  34. LIMIT DISTRIBUTION: GENESIS Let ¯ X n,k := X n,k /µ n,k and I n := uniform [ 1, n − 1 ] . Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.25/64

  35. LIMIT DISTRIBUTION: GENESIS Let ¯ X n,k := X n,k /µ n,k and I n := uniform [ 1, n − 1 ] . Then from d = X I n ,k − 1 + X ∗ X n,k n − I n ,k , it follows that = µ I n ,k − 1 X I n ,k − 1 + µ n − I n ,k d ¯ ¯ ¯ X ∗ X n,k n − I n ,k . µ n,k µ n,k Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.25/64

  36. LIMIT DISTRIBUTION: GENESIS Since µ n,k ≈ ( log n ) k /k ! and I n = ⌈ ( n − 1 ) U ⌉ , we expect that � k − 1 � log n + log U µ I n ,k − 1 k d → αU α , ≈ − µ n,k log n log n Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.26/64

  37. LIMIT DISTRIBUTION: GENESIS Since µ n,k ≈ ( log n ) k /k ! and I n = ⌈ ( n − 1 ) U ⌉ , we expect that � k − 1 � log n + log U µ I n ,k − 1 k d → αU α , ≈ − µ n,k log n log n and similarly µ n − I n ,k d → ( 1 − U ) α . − µ n,k Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.26/64

  38. LIMIT DISTRIBUTION: GENESIS Since µ n,k ≈ ( log n ) k /k ! and I n = ⌈ ( n − 1 ) U ⌉ , we expect that � k − 1 � log n + log U µ I n ,k − 1 k d → αU α , ≈ − µ n,k log n log n and similarly µ n − I n ,k d → ( 1 − U ) α . Thus if − µ n,k d d ¯ = αU α X α + ( 1 − U ) α X ∗ − X n,k → X α , then X α α . Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.26/64

  39. LIMIT DISTRIBUTIONS: NEW RESULTS For 0 ≤ α < e X n,k d − → X α , µ n,k with convergence of the first m moments for 0 ≤ α < m 1/ ( m − 1 ) . Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.27/64

  40. LIMIT DISTRIBUTIONS: NEW RESULTS For 0 ≤ α < e X n,k d − → X α , µ n,k with convergence of the first m moments for 0 ≤ α < m 1/ ( m − 1 ) . In particular, convergence of all moments holds only for α ∈ [ 0, 1 ] . Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.27/64

  41. LIMIT DISTRIBUTIONS: NEW RESULTS For 0 ≤ α < e X n,k d − → X α , µ n,k with convergence of the first m moments for 0 ≤ α < m 1/ ( m − 1 ) . In particular, convergence of all moments holds only for α ∈ [ 0, 1 ] . X 0 = X 1 ≡ 1 Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.27/64

  42. RECURRENCE OF MOMENTS Let ν m := E ( X m α ) . Then ν 0 = ν 1 = 1 and � � m � 1 ν j ν m − j α j − 1 ν m = j m − α m − 1 1 ≤ j<m × Γ ( jα + 1 ) Γ (( m − j ) α + 1 ) ( m ≥ 2 ) , Γ ( mα + 1 ) for 0 ≤ α < m 1/ ( m − 1 ) . Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.28/64

  43. ASYMPTOTIC NORMALITY WHEN α = 0 If 1 ≤ k = o ( log n ) , then � �   �� X n,k − ( log n ) k � � � k � � k !  − Φ ( x ) = O sup < x , P �   � � log n � �  ( log n ) 2k − 1 x � � ( k − 1 )! 2 ( 2k − 1 ) � � where Φ ( x ) denotes the standard normal distribution. Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.29/64

  44. ASYMPTOTIC NORMALITY WHEN α = 0 If 1 ≤ k = o ( log n ) , then � �   �� X n,k − ( log n ) k � � � k � � k !  − Φ ( x ) = O sup < x , P �   � � log n � �  ( log n ) 2k − 1 x � � ( k − 1 )! 2 ( 2k − 1 ) � � where Φ ( x ) denotes the standard normal distribution. � X n,1 ∼ N ( log n, log n ) In particular, . . . X n,2 ∼ N ( 1 2 ( log n ) 2 , 1 3 ( log n ) 3 ) Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.29/64

  45. A QUICKSORT-TYPE LIMIT LAW WHEN α = 1 If t n := k − log n = o ( log n ) and t n → ∞ , then X n,k − µ n,k m → X ′ − 1 , ( log n ) k − 1 t n k ! where X ′ 1 = ( d X α / d α ) | α = 1 or ∗ + U + U log U + ( 1 − U ) log ( 1 − U ) . d X ′ = UX ′ 1 + ( 1 − U ) X ′ 1 1 Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.30/64

  46. A QUICKSORT-TYPE LIMIT LAW WHEN α = 1 If t n := k − log n = o ( log n ) and t n → ∞ , then X n,k − µ n,k m → X ′ − 1 , ( log n ) k − 1 t n k ! where X ′ 1 = ( d X α / d α ) | α = 1 or ∗ + U + U log U + ( 1 − U ) log ( 1 − U ) . d X ′ = UX ′ 1 + ( 1 − U ) X ′ 1 1 Same law as total path length (or left path length in BST; Dobrow, Fill, 1999) and cost of an in-situ permutation algorithm. Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.30/64

  47. NONEXISTENCE OF LIMIT LAW WHEN k = log n + O ( 1 ) If k = log n + O ( 1 ) , then the limit distribution of � ( X n,k − µ n,k ) / V ( X n,k ) does not exist. Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.31/64

  48. NONEXISTENCE OF LIMIT LAW WHEN k = log n + O ( 1 ) If k = log n + O ( 1 ) , then the limit distribution of � ( X n,k − µ n,k ) / V ( X n,k ) does not exist. Main step of the proof: � m � ( log n ) k − 1 E ( X n,k − µ n,k ) m ∼ Polynomial ( t n ) ; � �� � k ! degree = m the remaining proof is similar to that used for the space requirement of random m -ary search trees when m ≥ 27 . Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.31/64

  49. APPROACHES USED Convergence in distribution: contraction method Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.32/64

  50. APPROACHES USED Convergence in distribution: contraction method Convergence of moments: method of moments Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.32/64

  51. APPROACHES USED Convergence in distribution: contraction method Convergence of moments: method of moments Common to both approaches is the resolution of the double-indexed recurrence � 1 a n,k = b n,k + ( a j,k − 1 + a j,k ) . n − 1 1 ≤ j<n Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.32/64

  52. APPROACHES USED Convergence in distribution: contraction method Convergence of moments: method of moments Common to both approaches is the resolution of the double-indexed recurrence � 1 a n,k = b n,k + ( a j,k − 1 + a j,k ) . n − 1 1 ≤ j<n (Martingale arguments also apply to recursive trees.) Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.32/64

  53. SOLUTION OF THE RECURRENCE If � 1 a n,k = ( a j,k + a j,k − 1 ) + b n,k , ( n ≥ 2 ; k ≥ 1 ) , n − 1 1 ≤ j<n with a n,k = b n,k for n = 1 and k = 0 , Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.33/64

  54. SOLUTION OF THE RECURRENCE If � 1 a n,k = ( a j,k + a j,k − 1 ) + b n,k , ( n ≥ 2 ; k ≥ 1 ) , n − 1 1 ≤ j<n with a n,k = b n,k for n = 1 and k = 0 , then � j − 1 � � 1 + w � � b j,k − r [ w r ]( w + 1 ) a n,k = b n,k + . ℓ 2 ≤ j<n 0 ≤ r ≤ k j<ℓ<n Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.33/64

  55. SOLUTION OF THE RECURRENCE If � 1 a n,k = ( a j,k + a j,k − 1 ) + b n,k , ( n ≥ 2 ; k ≥ 1 ) , n − 1 1 ≤ j<n with a n,k = b n,k for n = 1 and k = 0 , then � j − 1 � � 1 + w � � b j,k − r [ w r ]( w + 1 ) a n,k = b n,k + . ℓ 2 ≤ j<n 0 ≤ r ≤ k j<ℓ<n Proof by GF Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.33/64

  56. WHICHEVER APPROACH REQUIRES MEAN VALUE µ n,k satisfies the recurrence with b n,k = δ 0,k . Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.34/64

  57. WHICHEVER APPROACH REQUIRES MEAN VALUE µ n,k satisfies the recurrence with b n,k = δ 0,k . Thus � � 1 1 + w � � µ n,k = [ w k ]( w + 1 ) j ℓ 2 ≤ j<n j<ℓ<n Stirling1 ( n, k + 1 ) = ( n − 1 )! ( log n ) k � � �� 1 = 1 + O . k log n Γ ( 1 + log n ) k ! Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.34/64

  58. WHICHEVER APPROACH REQUIRES MEAN VALUE µ n,k satisfies the recurrence with b n,k = δ 0,k . Thus � � 1 1 + w � � µ n,k = [ w k ]( w + 1 ) j ℓ 2 ≤ j<n j<ℓ<n Stirling1 ( n, k + 1 ) = ( n − 1 )! ( log n ) k � � �� 1 = 1 + O . k log n Γ ( 1 + log n ) k ! Sufficient for all ranges except k = log n + O ( 1 ) . Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.34/64

  59. ASYMPTOTICS OF HIGHER MOMENTS For method of moments: all moments (centered or not) satisfy the same type of recurrences � 1 a n,k = ( a j,k + a j,k − 1 ) + b n,k , n − 1 1 ≤ j<n with different b n,k , and we need the ∼ -transfer : Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.35/64

  60. ASYMPTOTICS OF HIGHER MOMENTS For method of moments: all moments (centered or not) satisfy the same type of recurrences � 1 a n,k = ( a j,k + a j,k − 1 ) + b n,k , n − 1 1 ≤ j<n with different b n,k , and we need the ∼ -transfer : � m � m � � ( log n ) k ( log n ) k , then a n,k ∼ c mα + 1 if b n,k ∼ c . mα − α m Γ ( 1 + α ) k ! Γ ( 1 + α ) k ! c = c ( α ) Profile of random recursive trees and random binary search trees, INRIA, 26/04/2004 – p.35/64

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend