a new approach to poisson approximation and de
play

A new approach to Poisson approximation and de-Poissonization - PowerPoint PPT Presentation

A new approach to Poisson approximation and de-Poissonization Hsien-Kuei Hwang Vytas Zacharovas Institute of Statistical Science Academia Sinica Taiwan 2008 Outline Combinatorial scheme Poisson approximation Improvements of Prokhorovs


  1. A new approach to Poisson approximation and de-Poissonization Hsien-Kuei Hwang Vytas Zacharovas Institute of Statistical Science Academia Sinica Taiwan 2008

  2. Outline Combinatorial scheme Poisson approximation Improvements of Prokhorov’s results Depoissonization

  3. Definition of combinatorial scheme Let { X n } n ≥ n 0 be a sequence of random variables. For a wide class of combinatorial problems the probability generating function ∞ � P ( X n = m ) w n P n ( w ) = m = 0 satisfies asymptotically P n ( z ) = e λ ( z − 1 ) z h ( g ( z ) + ε n ( z )) ( n → ∞ ) , where h is a fixed non-negative integer, – λ = λ ( n ) → ∞ with n ; – g is independent of n and is analytic for | z | ≤ η , where η > 1; g ( 1 ) = 1 and g ( 0 ) � = 0; – ε n ( z ) satisfies ε n ( z ) = o ( 1 ) , uniformly for | z | ≤ η .

  4. Cauchy formula 1 � e λ ( z − 1 ) ( g ( z ) + ε n ( z )) dz P ( X n = m ) = z n + 1 2 π i | z | = r k ≈ e − λ λ m � a j C j ( λ, m ) (1) m ! j = 0 if g ( z ) ≈ a 0 + a 1 ( z − 1 ) + a 2 ( z − 1 ) 2 + · · · + ( z − 1 ) k

  5. Charlier polynomials The Charlier polynomials C k ( λ, m ) are defined by formula λ m m ! C k ( λ, m ) = [ z m ]( z − 1 ) k e λ z , (2) or, equivalently ∞ λ m m ! C k ( λ, m ) z m = ( z − 1 ) k e λ z . � m = 0

  6. Orthogonality relations Jordan in 1926 proved that Charlier polynomials are orthogonal with respect to Poisson measure e − λ λ m m ! , that is ∞ C k ( λ, m ) C l ( λ, m ) e − λ λ m k ! � m ! = δ k , l λ k , m = 0 Which means that if a sequence of complex numbers P 0 , P 1 , . . . satisfies condition ∞ | P j | 2 � < ∞ e − λ λ j j = 0 j ! then we can expand ∞ P m = e − λ λ m � a j C j ( λ, m ) . m ! j = 0

  7. Suppose we have a generating function ∞ � P n z n P ( z ) = n = 0 then ∞ P m = e − λ λ m � a j C j ( λ, m ) . m ! j = 0 is equivalent to ∞ ∞ P n z n = e λ ( z − 1 ) � � a j ( z − 1 ) j n = 0 j = 0

  8. P ( z ) = e λ ( z − 1 ) f ( z ) . e λ ( z − 1 ) is a generating function of Poisson distribution. Therefore if P ( z ) ≈ e λ ( z − 1 ) f ( 1 ) we can expect that P m ≈ f ( 1 ) e − λ λ m m ! .

  9. Parseval identity for Charlier polynomials ∞ ∞ P m z m = e λ ( z − 1 ) f ( z ) = e λ ( z − 1 ) � � a n ( z − 1 ) n m = 0 n = 0 Theorem Suppose f ( z ) is analytic in the whole complex plain and | f ( z ) | ≪ e H | z − 1 | 2 as | z | → ∞ , then for any λ > 2 H we have 2 ∞ � � ∞ e − λ λ n P n n ! � � � � λ n | a n | 2 n ! = � � e − λ λ n � � � n ! � n = 0 n = 0

  10. Application of the Parseval identity P ( z ) = e λ ( z − 1 ) g ( z ) Theorem Suppose g ( z ) is analytic in the whole complex plane and | g ( z ) | � Ae H | z − 1 | 2 , (3) for all z ∈ C with some positive constants A and H. Then uniformly for all N , n � 0 and λ � ( 2 + ǫ ) H with ǫ > 0 we have �   � � ( N + 1 ) / 2 N P n − e − λ λ n � � � ( 2 + ǫ ) H � � � a j C j ( λ, n ) � A � �   λ ( N + 2 ) / 2 n ! � � j = 0 � �

  11. Theorem Under the conditions of the previous theorem � � � ( N + 1 ) / 2 ∞ N P n − e − λ λ n � � � ( 2 + ǫ ) H � � � � a j C j ( λ, n ) � A � � λ ( N + 1 ) / 2 n ! � � n = 0 j = 0 � � for all n , N � 0 .

  12. Parseval identity for Charlier polynomials. Integral form. Theorem Suppose f ( z ) is analytic in the whole complex plain and | f ( z ) | ≪ e H | z − 1 | 2 as | z | → ∞ , then for any λ > 2 H we have 2 � ∞ ∞ � � e − λ λ n P n � � r /λ ) e − r dr , � � n ! = I ( � � e − λ λ n � � 0 � n ! � n = 0 where � π I ( r ) = 1 | f ( 1 + re it ) | 2 dt . 2 π − π

  13. Consequences of the Parseval identity Suppose ∞ � P n z n . P ( z ) = n = 0 � π I ( P , λ ; r ) = 1 | P ( 1 + re it ) e − λ re it | 2 dt . 2 π − π Theorem �� ∞ ∞ � 1 / 2 r /λ ) e − r dr � � | P n | � I ( P , λ ; (4) 0 n = 0 and �� ∞ � 1 / 2 � 1 r /λ ) re − r dr � | P n | � √ I ( P , λ ; Z ( n ) , (5) λ 0 for all n � 0 and Z ( n ) � e − ( m − λ ) 2 2 ( m + λ )

  14. Further inequalities Theorem If we additionally assume that P ( 1 ) = 0 , then �� ∞ ∞ √ � 1 / 2 r /λ ) r − 1 e − r dr � � | P 0 + P 1 + · · · + P n | � λ I ( P , λ ; , 0 n = 0 (6) and �� ∞ � 1 / 2 � r /λ ) e − r dr � | P 0 + P 1 + · · · + P n | � I ( P , λ ; Z ( n ) (7) 0 for all n � 0 .

  15. Generalized binomial distribution Suppose S n = I 1 + I 2 + · · · + I n , (8) where the X j ’s are independent Bernoulli random variables with P ( I j = 1 ) = 1 − P ( I j = 0 ) = p j . Then P ( S n = m ) z m = � � ( 1 + p j ( z − 1 )) = e λ ( z − 1 ) g ( z ) . 0 ≤ m ≤ n 1 ≤ j ≤ n We will use notation λ = p 1 + p 2 + · · · + p n .

  16. Generalized binomial distribution Suppose S n = I 1 + I 2 + · · · + I n , (8) where the X j ’s are independent Bernoulli random variables with P ( I j = 1 ) = 1 − P ( I j = 0 ) = p j . Then P ( S n = m ) z m = � � ( 1 + p j ( z − 1 )) = e λ ( z − 1 ) g ( z ) . 0 ≤ m ≤ n 1 ≤ j ≤ n We will use notation λ = p 1 + p 2 + · · · + p n .

  17. Example of application to Poisson approximation θ := p 2 1 + p 2 2 + · · · + p 2 n , and λ := p 1 + p 2 + · · · + p n p 1 + p 2 + · · · + p n Theorem Suppose θ < 1 then the following inequalities hold 2 ∞ � � e − λ λ m θ 2 P ( S n = m ) m ! � e � � � − 1 ( 1 − θ ) 3 , � � e − λ λ m 2 � � � m ! � m = 0 √ e ∞ � � P ( S n = m ) − e − λ λ m � 1 θ � � � � � � � 2 m ! 2 3 / 2 ( 1 − θ ) 3 / 2 m = 0 Since √ e / 2 3 / 2 = 0 . 582 . . . the bound of the above theorem could be sharper than that of Barbour-Hall inequality if θ � 0 . 3 and λ is large enough.

  18. Example of application to Poisson approximation θ := p 2 1 + p 2 2 + · · · + p 2 n , and λ := p 1 + p 2 + · · · + p n p 1 + p 2 + · · · + p n Theorem Suppose θ < 1 then the following inequalities hold 2 ∞ � � e − λ λ m θ 2 P ( S n = m ) m ! � e � � � − 1 ( 1 − θ ) 3 , � � e − λ λ m 2 � � � m ! � m = 0 √ e ∞ � � P ( S n = m ) − e − λ λ m � 1 θ � � � � � � � 2 m ! 2 3 / 2 ( 1 − θ ) 3 / 2 m = 0 Since √ e / 2 3 / 2 = 0 . 582 . . . the bound of the above theorem could be sharper than that of Barbour-Hall inequality if θ � 0 . 3 and λ is large enough.

  19. Example of application to Poisson approximation θ := p 2 1 + p 2 2 + · · · + p 2 n , and λ := p 1 + p 2 + · · · + p n p 1 + p 2 + · · · + p n Theorem Suppose θ < 1 then the following inequalities hold 2 ∞ � � e − λ λ m θ 2 P ( S n = m ) m ! � e � � � − 1 ( 1 − θ ) 3 , � � e − λ λ m 2 � � � m ! � m = 0 √ e ∞ � � P ( S n = m ) − e − λ λ m � 1 θ � � � � � � � 2 m ! 2 3 / 2 ( 1 − θ ) 3 / 2 m = 0 Since √ e / 2 3 / 2 = 0 . 582 . . . the bound of the above theorem could be sharper than that of Barbour-Hall inequality if θ � 0 . 3 and λ is large enough.

  20. Kolmogorov distance θ := p 2 1 + p 2 2 + · · · + p 2 n , and λ := p 1 + p 2 + · · · + p n p 1 + p 2 + · · · + p n Theorem Whenever θ < 1 we have √ e � � e − λ λ m � � θ � � � � P ( S n � j ) − Z ( j ) , � � � 2 1 / 2 ( 1 − θ ) 3 / 2 m ! � � m � j � � where   e − λ λ m e − λ λ m  � e − ( m − λ ) 2   � � Z ( n ) = min m ! , 2 ( m + λ ) m !  j � n j > n

  21. Compound poisson distribution λ 3 := p 3 1 + p 3 2 + · · · + p 3 n Theorem Suppose θ < 1 / 3 then ∞ � � � λ 3 2 e 1 e λ ( z − 1 ) − λ 2 � � 2 ( z − 1 ) 2 �� � � P ( S n = m ) − [ z m ] ( 1 − 3 θ ) 2 , � � λ 3 / 2 3 m = 0 � � � � λ 3 8 e Z ( m ) e λ ( z − 1 ) − λ 2 � � 2 ( z − 1 ) 2 �� � P ( S n = m ) − [ z m ] ( 1 − 3 θ ) 5 / 2 . � � λ 2 3

  22. Generalized binomial distribution in combinatorics Can be used if the discrete random variable X n is Bernoulli decomposable X n = I 1 + I 2 + · · · + I n This happens if a probability generating function F n ( z ) of a discrete random variable X n is a polynomial whose root are real and negative Example ◮ Hypergeometric distribution. ◮ Number of cycles in a random permutation

  23. Generalized binomial distribution in combinatorics Can be used if the discrete random variable X n is Bernoulli decomposable X n = I 1 + I 2 + · · · + I n This happens if a probability generating function F n ( z ) of a discrete random variable X n is a polynomial whose root are real and negative Example ◮ Hypergeometric distribution. ◮ Number of cycles in a random permutation

  24. Generalized binomial distribution in combinatorics Can be used if the discrete random variable X n is Bernoulli decomposable X n = I 1 + I 2 + · · · + I n This happens if a probability generating function F n ( z ) of a discrete random variable X n is a polynomial whose root are real and negative Example ◮ Hypergeometric distribution. ◮ Number of cycles in a random permutation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend