optimal control of ripple formation in abrasive water jet
play

Optimal Control of Ripple Formation in Abrasive Water-Jet Cutting - PowerPoint PPT Presentation

Abrasive waterjet cutting Instantaneous control Optimal Control of Ripple Formation in Abrasive Water-Jet Cutting Helmut Maurer, Karsten Theien maurer@math.uni-muenster.de ktheissen@dspace.de Wilhelms-Universit at, M unster, Germany


  1. Abrasive waterjet cutting Instantaneous control Optimal Control of Ripple Formation in Abrasive Water-Jet Cutting Helmut Maurer, Karsten Theißen maurer@math.uni-muenster.de ktheissen@dspace.de Wilhelms-Universit¨ at, M¨ unster, Germany CEA - EDF -INRIA School, May 29 - June 1, 2007 CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 1 of 24

  2. Abrasive waterjet cutting Instantaneous control Outline 1 Abrasive waterjet cutting Physical model Mathematical description Numerical results CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 2 of 24

  3. Abrasive waterjet cutting Instantaneous control Outline 1 Abrasive waterjet cutting Physical model Mathematical description Numerical results 2 Instantaneous control Controlling evolution equations into stationary solutions Instantaneous control of an abrasive waterjet cutter CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 2 of 24

  4. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Outline 1 Abrasive waterjet cutting Physical model Mathematical description Numerical results 2 Instantaneous control Controlling evolution equations into stationary solutions Instantaneous control of an abrasive waterjet cutter CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 3 of 24

  5. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Abrasive waterjet cutter c � van Berkel Technische Berdrijven CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 4 of 24

  6. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Abrasive waterjet cutter head 1 water nozzle 2 abrasive head 3 waterjet 4 abrasive 5 mixing chamber 6 focussing tube 7 abrasive waterjet � G. Radons - TU Chemnitz c � G. Radons - TU Chemnitz c CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 5 of 24

  7. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Ripple formation � R. Friedrich - Universit¨ c at M¨ unster c � Clemson University - Geological Sciences c � JIT Waterjet CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 6 of 24

  8. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Ripple formation � R. Friedrich - Universit¨ c at M¨ unster c � Clemson University - Geological Sciences c � JIT Waterjet CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 6 of 24

  9. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Ripple formation � R. Friedrich - Universit¨ c at M¨ unster cutting depth y ( x , · ) c � Clemson University - Geological Sciences space domain CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 6 of 24

  10. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Generalized Kuramoto-Sivashinsky Equation (GKSE) � � f ( y )+ α △ y + β △ 2 y y t = V ( x ) · − uy x CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 7 of 24

  11. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Generalized Kuramoto-Sivashinsky Equation (GKSE) � � � � f ( y )+ α △ y + β △ 2 y f ( y )+ α △ y + β △ 2 y y t = V ( x ) · y t = V ( x ) · − uy x − uy x jet profile e.g. Gauß CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 7 of 24

  12. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Generalized Kuramoto-Sivashinsky Equation (GKSE) � � � � f ( y )+ α △ y + β △ 2 y f ( y )+ α △ y + β △ 2 y y t = V ( x ) · y t = V ( x ) · − uy x − uy x jet profile e.g. Gauß angle dependence of wear e.g for brittle material: 1 f ( y ) = 1+ y 2 x CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 7 of 24

  13. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Generalized Kuramoto-Sivashinsky Equation (GKSE) � � � � f ( y )+ α △ y + β △ 2 y f ( y )+ α △ y + β △ 2 y y t = V ( x ) · y t = V ( x ) · − uy x − uy x jet profile e.g. Gauß curvature dependence α < 0 ” negative diffusion” angle dependence of wear e.g for brittle material: 1 f ( y ) = 1+ y 2 x CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 7 of 24

  14. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Generalized Kuramoto-Sivashinsky Equation (GKSE) � � � � f ( y )+ α △ y + β △ 2 y f ( y )+ α △ y + β △ 2 y y t = V ( x ) · y t = V ( x ) · − uy x − uy x jet profile e.g. Gauß curvature dependence α < 0 ” negative diffusion” angle dependence of wear e.g for brittle material: higher order term 1 f ( y ) = 1+ y 2 β < 0 from Taylor expansion x CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 7 of 24

  15. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Generalized Kuramoto-Sivashinsky Equation (GKSE) � � � � f ( y )+ α △ y + β △ 2 y f ( y )+ α △ y + β △ 2 y y t = V ( x ) · y t = V ( x ) · − uy x − uy x convective term workpiece material fed into jet with velocity u ≤ 0 jet profile e.g. Gauß curvature dependence α < 0 ” negative diffusion” angle dependence of wear e.g for brittle material: higher order term 1 f ( y ) = 1+ y 2 β < 0 from Taylor expansion x CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 7 of 24

  16. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Mathematical model of abrasive waterjet cutting dynamic f ( y ) + α △ y + β △ 2 y � � y t = V ( x ) · − uy x in Q initial and boundary conditions 1d-domain Ω := (15 , 28) y ( · , 0) = 0 in Ω endtime y (28 , · ) = 0 in (0 , T ) T > 0 space-time-cylinder Q := Ω × (0 , T ) y : Q → R CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 8 of 24

  17. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Mathematical model of abrasive waterjet cutting dynamic f ( y ) + α △ y + β △ 2 y � � y t = V ( x ) · − uy x in Q initial and boundary conditions 1d-domain Ω := (15 , 28) y ( · , 0) = 0 in Ω endtime y (28 , · ) = 0 in (0 , T ) T > 0 space-time-cylinder Q := Ω × (0 , T ) y : Q → R CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 8 of 24

  18. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Mathematical model of abrasive waterjet cutting dynamic f ( y ) + α △ y + β △ 2 y � � y t = V ( x ) · − uy x in Q initial and boundary conditions 1d-domain Ω := (15 , 28) y ( · , 0) = 0 in Ω endtime y (28 , · ) = 0 in (0 , T ) T > 0 space-time-cylinder Q := Ω × (0 , T ) y : Q → R CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 8 of 24

  19. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Mathematical model of abrasive waterjet cutting dynamic f ( y ) + α △ y + β △ 2 y � � y t = V ( x ) · − uy x in Q initial and boundary conditions 1d-domain Ω := (15 , 28) y ( · , 0) = 0 in Ω endtime y (28 , · ) = 0 in (0 , T ) T > 0 space-time-cylinder Q := Ω × (0 , T ) y : Q → R CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 8 of 24

  20. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Mathematical model of abrasive waterjet cutting dynamic f ( y ) + α △ y + β △ 2 y � � y t = V ( x ) · − uy x in Q initial and boundary conditions 1d-domain Ω := (15 , 28) y ( · , 0) = 0 in Ω endtime y (28 , · ) = 0 in (0 , T ) T > 0 space-time-cylinder Q := Ω × (0 , T ) y : Q → R CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 8 of 24

  21. Abrasive waterjet cutting Instantaneous control Physical model Mathematical description Numerical results Mathematical model of abrasive waterjet cutting dynamic f ( y ) + α △ y + β △ 2 y � � y t = V ( x ) · − uy x in Q initial and boundary conditions jet profile V ( x ) := e − ( x − x 0 ) 2 y ( · , 0) = 0 in Ω point of impact y (28 , · ) = 0 in (0 , T ) x 0 := 24 angle dependence of wear 1 f ( y ) := 1+ y 2 x α = − 1 , β = − 5 . 066 CEA-EDF-INRIA Maurer, Theißen Optimal Control Methods in Waterjet Cutting 9 of 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend