asymmetric backscattering in deformed microcavities
play

Asymmetric backscattering in deformed microcavities: fundamentals - PowerPoint PPT Presentation

Asymmetric backscattering in deformed microcavities: fundamentals and applications Jan Wiersig Otto-von-Guericke-Universitt Magdeburg: J. Kullig, A. Eberspcher, J.-B. Shim (now Lige) Collaborations: S. W. Kim (Busan), M. Hentschel


  1. Asymmetric backscattering in deformed microcavities: fundamentals and applications Jan Wiersig Otto-von-Guericke-Universität Magdeburg: J. Kullig, A. Eberspächer, J.-B. Shim (now Liège) Collaborations: S. W. Kim (Busan), M. Hentschel (Ilmenau), J.-W. Ryu (Daegu), S. Shinohara (Kyoto), H. Schomerus (Lancaster), H. Cao (Yale), R. Sarma (Yale), L. Ge (New York) Introduction to deformed microcavities Asymmetric backscattering: fundamentals microcavity sensor Asymmetric backscattering: applications 1 / 28

  2. Introduction to deformed microcavities 2 / 28

  3. Introduction to deformed microcavities Microdisk Light confinement by total internal reflection χ > χ c χ χ χ < χ c P. Michler et al. Optical modes: solutions of Maxwell’s equations with harmonic time dependence High Q = ωτ with frequency ω and lifetime τ Applications: microlasers, single-photon sources, sensors, filters, ... 3 / 28

  4. Introduction to deformed microcavities Open quantum billiards J.U. Nöckel und A.D. Stone, Nature 385 , 45 (1997) χ s refractive index n 1 χ p = sin 1/n leaky region 0 no total internal reflection −1/n −1 0 s/s 1 max 4 / 28

  5. Introduction to deformed microcavities Directed light emission Limaçon of Pascal J. Wiersig and M. Hentschel, PRL 100 , 033901 (2008) ρ ( φ ) = R ( 1 + ε cos φ ) T. Harayama et al., Kyoto F. Capasso et al., Harvard H. Cao et al., Yale C.M. Kim et al., Seoul unidirectional emission along the unstable manifold of the chaotic saddle 5 / 28

  6. Introduction to deformed microcavities Directed light emission Limaçon of Pascal J. Wiersig and M. Hentschel, PRL 100 , 033901 (2008) ρ ( φ ) = R ( 1 + ε cos φ ) T. Harayama et al., Kyoto F. Capasso et al., Harvard H. Cao et al., Yale C.M. Kim et al., Seoul unidirectional emission along the unstable manifold of the chaotic saddle Shortegg 90 ◦ (a) (b) 135 ◦ 45 ◦ 180 ◦ 0 ◦ 225 ◦ 315 ◦ 50 µ m 270 ◦ M. Schermer, S. Bittner, G. Singh, C. Ulysee, M. Lebental, and J. Wiersig, APL 106 , 101107 (2015) 5 / 28

  7. Introduction to deformed microcavities Non -Hermitian phenomena Optical microcavities are open wave systems mode frequencies ( b = energy eigenvalues) ∈ C modes ( b = energy eigenstates) are nonorthogonal modes may not form a complete basis 6 / 28

  8. Introduction to deformed microcavities Non -Hermitian phenomena Optical microcavities are open wave systems mode frequencies ( b = energy eigenvalues) ∈ C modes ( b = energy eigenstates) are nonorthogonal modes may not form a complete basis Exceptional point (EP) Point in parameter space at which two (or more) eigenvalues and eigenstates of a non-Hermitian linear operator coalesce. EP � = diabolic point T. Kato, Perturbation Theory for Linear Operators (1966) 6 / 28

  9. Introduction to deformed microcavities Non -Hermitian phenomena Optical microcavities are open wave systems mode frequencies ( b = energy eigenvalues) ∈ C modes ( b = energy eigenstates) are nonorthogonal modes may not form a complete basis Exceptional point (EP) Point in parameter space at which two (or more) eigenvalues and eigenstates of a non-Hermitian linear operator coalesce. EP � = diabolic point T. Kato, Perturbation Theory for Linear Operators (1966) microwave cavity C. Dembowski et al. , PRL 86 , 787 (2001) deformed microcavity (liquid jet containing laser dyes) S.B. Lee et al. , PRL 103 , 134101 (2009) 6 / 28

  10. Introduction to deformed microcavities 2D mode equation Effective index approximation h ∇ 2 + n ( x , y ) 2 k 2 i ψ ( x , y ) = 0  E z TM n(x,y) = 1 Re [ ψ ( x , y ) e − i ω t ] = H z TE n(x,y) = n Continuity conditions at the cavity’s boundary TM : ψ and ∂ψ 1 TE : ψ and n 2 ∂ψ Outgoing wave condition at infinity = ⇒ ω ∈ C , quasibound state with lifetime 1 τ = − 2Im ( ω ) 7 / 28

  11. Introduction to deformed microcavities 2D mode equation Effective index approximation h ∇ 2 + n ( x , y ) 2 k 2 i ψ ( x , y ) = 0  E z TM n(x,y) = 1 Re [ ψ ( x , y ) e − i ω t ] = H z TE n(x,y) = n Continuity conditions at the cavity’s boundary TM : ψ and ∂ψ 1 TE : ψ and n 2 ∂ψ Outgoing wave condition at infinity = ⇒ ω ∈ C , quasibound state with lifetime 1 τ = − 2Im ( ω ) Boundary element method J. Wiersig, J. Opt. A: Pure Appl. Opt. 5 , 53 (2003) S -matrix approach/wave matching e.g. M. Hentschel and K. Richter, PRE 66 , 056207 (2002) Review on deformed microcavities H. Cao and J. Wiersig, RMP 87 , 61 (2015) 7 / 28

  12. Asymmetric backscattering: Fundamentals 8 / 28

  13. Asymmetric backscattering: Fundamentals Spiral cavity no mirror symmetry “ ” 1 − ε ρ ( φ ) = R 2 π φ ; ε > 0 fully chaotic ray dynamics notch ε (width R) R M. Kneissl et al. , APL 84 , 2485 (2004) 9 / 28

  14. Asymmetric backscattering: Fundamentals Chirality G. D. Chern et al. , APL 83 , 1710 (2003) S .-Y. Lee et al. , PRL 93 , 164102 (2004) Angular momentum representation (inside the cavity) X ∞ ψ ( r , φ ) = α m J m ( nkr ) exp ( im φ ) m = −∞ Chirality: mainly traveling wave instead of standing wave Experimental confirmation M. Kim et al. , Opt. Lett. 39 , 2423 (2014) 10 / 28

  15. Asymmetric backscattering: Fundamentals Nearly degenerate mode pairs and copropagation J. Wiersig, S.W. Kim, and M. Hentschel, PRA 78 , 053809 (2008) TE polarization, n = 2, and small deformation ε = 0 . 04 (spiral has been flipped) Re ( kR ) c R = kR = 41 . 4674 − i 0 . 03419 Ω = 41 . 4625 − i 0 . 03469; Q = Ω = ω 2Im ( kR ) 11 / 28

  16. Asymmetric backscattering: Fundamentals Nearly degenerate mode pairs and copropagation J. Wiersig, S.W. Kim, and M. Hentschel, PRA 78 , 053809 (2008) TE polarization, n = 2, and small deformation ε = 0 . 04 (spiral has been flipped) Re ( kR ) c R = kR = 41 . 4674 − i 0 . 03419 Ω = 41 . 4625 − i 0 . 03469; Q = Ω = ω 2Im ( kR ) copropagation: both modes have the same dominant propagation direction 11 / 28

  17. Asymmetric backscattering: Fundamentals Angular momentum representation 1 chirality CW CCW copropagation 2 0.5 | α m | 0 -80 -60 -40 -20 0 20 40 60 80 m 12 / 28

  18. Asymmetric backscattering: Fundamentals Angular momentum representation 1 chirality CW CCW 2 0.5 | α m | copropagation 0 1 0.5 Re( α m ) 0 -0.5 -80 -60 -40 -20 0 20 40 60 80 m 12 / 28

  19. Asymmetric backscattering: Fundamentals Angular momentum representation 1 chirality CW CCW 2 0.5 | α m | copropagation 0 1 Re( α m ) 0.5 0 -0.5 0.5 Im( α m ) 0 -0.5 -80 -60 -40 -20 0 20 40 60 80 m 12 / 28

  20. Asymmetric backscattering: Fundamentals Angular momentum representation 1 chirality CW CCW 2 0.5 | α m | copropagation 0 1 Re( α m ) 0.5 0 -0.5 0.5 Im( α m ) 0 -0.5 -80 -60 -40 -20 0 20 40 60 80 m “P − 1 m = 1 | α m | 2 ” m = −∞ | α m | 2 , P ∞ Chirality  0 . 978 min “P − 1 ” ≈ α = 1 − m = −∞ | α m | 2 , P ∞ 0 . 967 max m = 1 | α m | 2 12 / 28

  21. Asymmetric backscattering: Fundamentals Nonorthogonal mode pairs Ω = 41 . 4674 − i 0 . 03419 Ω = 41 . 4625 − i 0 . 03469 Normalized overlap integral R C dxdy ψ ∗ | 1 ψ 2 | S = qR qR ≈ 0 . 972 almost collinear! C dxdy ψ ∗ C dxdy ψ ∗ 1 ψ 1 2 ψ 2 13 / 28

  22. Asymmetric backscattering: Fundamentals Asymmetric Limaçon cavity ρ = R [ 1 + ε 1 cos φ + ε 2 cos ( 2 φ + δ )] J. Wiersig et al. , PRA 84 , 023845 (2011) Overlap S ≈ 0 . 72 Field inside Field outside Chirality α ≈ 0 . 84 Ω + = 12 . 31981 − i 0 . 00089 Ω − = 12 . 31985 − i 0 . 0009 14 / 28

  23. Asymmetric backscattering: Fundamentals A toy model How to explain the chirality, copropagation, and nonorthogonality? 15 / 28

  24. Asymmetric backscattering: Fundamentals A toy model How to explain the chirality, copropagation, and nonorthogonality? asymmetric backscattering of CW and CCW traveling waves CCW CW 15 / 28

  25. Asymmetric backscattering: Fundamentals A toy model How to explain the chirality, copropagation, and nonorthogonality? asymmetric backscattering of CW and CCW traveling waves CCW CW Effective non -Hermitian Hamiltonian in (CCW,CW) basis „ Ω « A H eff = with Ω , A , B ∈ C and | A | � = | B | B Ω 15 / 28

  26. Asymmetric backscattering: Fundamentals A toy model How to explain the chirality, copropagation, and nonorthogonality? asymmetric backscattering of CW and CCW traveling waves CCW CW Effective non -Hermitian Hamiltonian in (CCW,CW) basis „ Ω « A H eff = with Ω , A , B ∈ C and | A | � = | B | B Ω open quantum/wave systems with weak CW-CCW coupling and no mirror symmetries J. Wiersig, PRA 89 , 012119 (2014) 15 / 28

  27. Asymmetric backscattering: Fundamentals Properties of the effective Hamiltonian „ Ω « A H eff = ; | A | � = | B | B Ω Complex eigenvalues and (right hand) eigenvectors √ AB Ω ± = Ω ± „ ψ CCW , ± « „ √ « A � √ ψ ± = = B ψ CW , ± ± 16 / 28

  28. Asymmetric backscattering: Fundamentals Properties of the effective Hamiltonian „ Ω « A H eff = ; | A | � = | B | B Ω Complex eigenvalues and (right hand) eigenvectors √ AB Ω ± = Ω ± „ ψ CCW , ± « „ √ « A � √ ψ ± = = B ψ CW , ± ± 1 CW CCW 2 0.5 | α m | 0 1 0.5 Re( α m ) 0 -0.5 -80 -60 -40 -20 0 20 40 60 80 m 16 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend