application of nmr in the design of peptide tools for
play

Application of NMR in the Design of Peptide Tools for Chemical - PowerPoint PPT Presentation

Application of NMR in the Design of Peptide Tools for Chemical Biology and Drug Discovery Dr Andrew Jamieson School of Chemistry University of Glasgow andrew.jamieson.2@glasgow.ac.uk @jamiesonlab Research Programme Peptides/peptidomimetics


  1. Application of NMR in the Design of Peptide Tools for Chemical Biology and Drug Discovery Dr Andrew Jamieson School of Chemistry University of Glasgow andrew.jamieson.2@glasgow.ac.uk @jamiesonlab

  2. Research Programme Peptides/peptidomimetics β -Strand Mimetic O i + 1 i + 3 O O R O R O N O N H H H N N N N N N N N N H H O R 2 O R O R O R R 1 R 3 i i + 2 i + 4 BocHN O Chem. Comm., 2012 , 48 , 3709-3711. Stapled α -Helix Peptides Zinc Dependent Enzyme Inhibitors Aurora-A/TPX2 HDAC/DUB A" B" O ZBG HN C" His187" O O H AcHN N N NH 2 H R 1 R 2 O R 1 , R 2 = amino acid side chain ACS Chem. Bio ., 2016 , 11 , 3383-3390. Rep. Org Chem. , 2015 , 5 , 65 – 74. Nat. Commun. , 2016 , 7 , 11262 Org. Bio. Chem ., 2014 , 12 , 8775-8782.

  3. Do Peptides Make Good Drugs? • Highly selective • Hormones, neurotransmitters, growth factors, ion channel ligands. • Efficacious • Relatively safe and well tolerated • Lower production complexity compared with protein-based biopharmaceuticals • Enfuvirtide (36 residue peptide HIV therapy) Ø 60 peptide drugs in clinic Ø 140 peptide drugs in clinical trials Ø 500 therapeutic peptides in preclinical development (2015)

  4. Problems with Peptide Drugs • Limited orally bioavailability • Low membrane permeability (dissociation of water) H H O O R 2 H O H 3 N N N O R 1 H O R 3 H O H O H H • Approximately 75% of peptide drugs are administered intravenously • Short circulating plasma half-life - Proteases O O H 2 N N OH H

  5. Peptidomimetic Design Br R Design synthetic High-throughput R N mimic of important O screen to identify Br side-chain residues small molecule inhibitors N R N OH N O O J. Am. Chem. Soc. , 2001, 123 , 5382 Science , 2004, 303 , 844. Designed Peptidomimetics for the disruption of protein-protein interactions • Binding affinity Conformationally constrain native peptide • Specificity • Protease resistant J. Am. Chem. Soc. , 1997, 119 , 455. • Cell permeable?

  6. Stapled Helices Salt Bridge Lactam Disulfide O O NH O S NH S NH 3 O J. C. Phelan R. L. Baldwin P. G. Schultz J. Am. Chem. Soc. , 1997, 119 , 455 Biochemistry , 1993, 32 , 9668 J. Am. Chem. Soc. , 1991, 113 , 9391 Hydrophobic Metal ligation Hydrocarbon interactions O 2 N L H NO 2 M N O L O N NO 2 H O 2 N P. B. Hopkins R. H. Grubbs A. D. Hamilton J. Am. Chem. Soc. , 1990, 112 , 9403 Angew. Chem. Int. Ed. , 1998, 37 , 3281 Biochemistry , 1995, 34 , 984 M. R. Ghadiri J. Am. Chem. Soc. , 1990, 112 , 9633

  7. All-Hydrocarbon Stapled Peptides S i, i+3 R (8) S i, i+4 S (8) R i, i+7 S (11) G.L. Verdine Y.-W. Kim & G.L. Verdine G.L. Verdine Org. Lett., 2010 , 12 , 3046 Bioorg. Med. Chem. Lett., JACS, 2000 , 122 , 5891 2009 , 19 , 2533 • Hydrocarbon length • Stereochemistry • α -methyl- α -AA Double staple Stitched staple L.D. Walensky G.L. Verdine Proc. Natl. Acad. Sci. USA, 2010 , JACS, 2014 , 136 , 12314 107 , 14093 N. S. Robertson, A. G. Jamieson, Rep. Org Chem. , 2015 , 5 , 65 - 74.

  8. Conotoxin Proteomimetic Conus Kinoshitai • Conotoxins are a family mini-proteins • Isolated from marine cone snails • Predatory sea animal www.coneshell.net • Produces 100s of neurotoxic peptides • Conotoxin µ -KIIIA • Voltage-gated sodium channels, Na V 1.1-1.9 • Potential as analgesic • Knottin or cystine knot scaffold Chem. Rev. , 2014, 114 , 5815–5847.

  9. µ -KIIIA Structure Determination • 15 possible foldamers of µ -KIIIA • Structural initially assigned as wrongly ( Biochemistry , 2009 , 48 , 1210–1219 ) K. K. Khoo, K. Gupta, B. R. Green, M.-M. Zhang, M. Watkins, B. M. Olivera, P. Balaram, D. Yoshikami, G. Bulaj, R. S. Norton, Biochemistry , 2012 , 51 , 9826–9835.

  10. µ -KIIIA Structure Determination Amide and aromatic region of 1D 1H-NMR spectra at 5 °C intervals from 5-25 °C, acquired on a Bruker DRX-600 spectrometer for a 2.6 mM solution of µ-KIIIA (pH 4.8) K. K. Khoo, K. Gupta, B. R. Green, M.-M. Zhang, M. Watkins, B. M. Olivera, P. Balaram, D. Yoshikami, G. Bulaj, R. S. Norton, Biochemistry , 2012 , 51 , 9826–9835.

  11. µ -KIIIA Structure Determination Amide and aromatic region of NOESY spectra (blue) overlayed with TOCSY spectra (red) at 5 °C for µ-KIIIA (pH 4.8). K. K. Khoo, K. Gupta, B. R. Green, M.-M. Zhang, M. Watkins, B. M. Olivera, P. Balaram, D. Yoshikami, G. Bulaj, R. S. Norton, Biochemistry , 2012 , 51 , 9826–9835.

  12. µ -KIIIA Structure Determination Parameters characterizing the final 20 structures of µ-KIIIA plotted as a function of residue number. Top left panel indicates number of long range (i-j ≥ 6), short range (2 ≤ i-j ≤ 5), sequential and intra NOE restraints used in the final structure calculations. Bottom left and RHS panels show angular order parameters (S) for backbone ( φ , ψ ) and sidechain ( χ 1 ) dihedral angles. K. K. Khoo, K. Gupta, B. R. Green, M.-M. Zhang, M. Watkins, B. M. Olivera, P. Balaram, D. Yoshikami, G. Bulaj, R. S. Norton, Biochemistry , 2012 , 51 , 9826–9835.

  13. µ -KIIIA Structure Determination 20 final structures for µ -KIIIA K. K. Khoo, K. Gupta, B. R. Green, M.-M. Zhang, M. Watkins, B. M. Olivera, P. Balaram, D. Yoshikami, G. Bulaj, R. S. Norton, Biochemistry , 2012 , 51 , 9826–9835.

  14. µ -KIIIA Structure Determination K. K. Khoo, K. Gupta, B. R. Green, M.-M. Zhang, M. Watkins, B. M. Olivera, P. Balaram, D. Yoshikami, G. Bulaj, R. S. Norton, Biochemistry , 2012 , 51 , 9826–9835.

  15. µ -KIIIA Structure Determination K. K. Khoo, K. Gupta, B. R. Green, M.-M. Zhang, M. Watkins, B. M. Olivera, P. Balaram, D. Yoshikami, G. Bulaj, R. S. Norton, Biochemistry , 2012 , 51 , 9826–9835.

  16. Conotoxin Proteomimetic • Synthesis of knottin proteins is extremely difficult. SH SH SH SH SHSH C C N C S S K W C R D H S R C C oxidation S S S S S S C C N C S S K W C R D H S R C C A. Van Der Haegen et al , FEBS J. , 2011 , 278 , 3408–3418.

  17. Conotoxin Proteomimetic S S S S S S C C N C S S K W C R D H S R C C Ac S K W X R D H X R NH 2 µ -KIIIA mimetic µ -conotoxin KIIIA

  18. Conotoxin Proteomimetic S S S S S S C C N C S S K W C R D H S R C C Ac S K W X R D H X R NH 2 µ -KIIIA mimetic • Simple synthesis • Easy purification µ -conotoxin KIIIA • α -helical

  19. Conotoxin Proteomimetic Synthesis FmocHN 1) 20% piperidine/DMF FmocHN 2) Fmoc-AA-OH HCTU, DIEA Purification Rink Amide Resin DMF, MW Ac-Ser( t Bu)-Lys(Boc)-Trp(Boc)- X -Arg(Pbf)-Asp( t Bu)-His(Trt)- X -Arg(Pbf)-NH Grubb's 1 st Gen. Cat. 100% conversion DCM, 2 h Ac-Ser( t Bu)-Lys(Boc)-Trp(Boc)- X -Arg(Pbf)-Asp( t Bu)-His(Trt)- X -Arg(Pbf)-NH TFA/TIS/H 2 O, (95:2.5:2.5), 3 h >99% Purity Ac-Ser-Lys-Trp- X -Arg-Asp-His- X -Arg-NH 2 75% yield

  20. Conotoxin Proteomimetic S S S S S S C C N C S S K W C R D H S R C C Ac S K W A R D H S R NH 2 Ac S K W X R D H X R NH 2

  21. Conotoxin Proteomimetic S S S S S S C C N C S S K W C R D H S R C C Ac S K W A R D H S R NH 2 Ac S K W X R D H X R NH 2 • Simple synthesis • Easy purification • α -helical

  22. Staple Scan Sunny Hanspal KIIIA Short Native Sequence Ac K W A R D H S R NH 2 CT1 KIIIA Staple Scan Ac X W A R X H S R NH 2 CT2 Ac K X A R D X S R NH 2 CT3 CT4 Ac K W X R D H X R NH 2 Ac K W A X D H S X NH 2 CT5

  23. Staple Scan Sunny Hanspal KIIIA Short Native Sequence Ac K W A R D H S R NH 2 CT1 KIIIA Staple Scan Ac X W A R X H S R NH 2 CT2 Two isomers in HPLC? Ac K X A R D X S R NH 2 CT3 CT4 Ac K W X R D H X R NH 2 Ac K W A X D H S X NH 2 CT5

  24. Cis/trans isomers Sunny Hanspal Tate. E et al, ACS Chem. Biol., 2014 , 9(10), 2204-2209

  25. Conformational Analysis Sunny Hanspal Circular Dichroism 13800 KIIIA Short Native Sequence CT1 8800 CT5 Ac K W A R D H S R NH 2 CT1 Ellip&city θ 3800 CT3 trans Wavelength (nm) KIIIA Staple Scan CT3 Cis -1200 180 200 220 240 260 CT4 -6200 CT2 Prod 2 Ac X W A R X H S R NH 2 CT2 -11200 Peptide Helicity (%) Ac K X A R D X S R NH 2 CT3 Conotoxin 1 16 Conotoxin 2 35 CT4 Ac K W X R D H X R NH 2 Conotoxin 3-cis 43 Conotoxin 3-trans 22 Conotoxin 4 31 Ac K W A X D H S X NH 2 CT5 Conotoxin 5 18 i – i + 4 staple – cis alkene required

  26. All-Hydrocarbon Stapled Peptides S i, i+3 R (8) S i, i+4 S (8) R i, i+7 S (11) G.L. Verdine Y.-W. Kim & G.L. Verdine G.L. Verdine Org. Lett., 2010 , 12 , 3046 Bioorg. Med. Chem. Lett., JACS, 2000 , 122 , 5891 2009 , 19 , 2533 • Binding affinity • Specificity • Protease resistant • Cell permeable? Double staple Stitched staple L.D. Walensky G.L. Verdine Proc. Natl. Acad. Sci. USA, 2010 , JACS, 2014 , 136 , 12314 107 , 14093 N. S. Robertson, A. G. Jamieson, Rep. Org Chem. , 2015 , 5 , 65 - 74.

  27. Astrid Knuhtsen µ -KIIIA i - i +7 Stapled Peptide S S S S S S C C N C S S K W C R D H S R C C • NMR structure required for design SPPS FmocHN Ac X K W A R D H X R NH 2 Two isomers in HPLC!

  28. Astrid Knuhtsen µ -KIIIA i - i +7 Stapled Peptide James Jones (Dstl) Decoupled cis

  29. Astrid Knuhtsen µ -KIIIA i - i +7 Stapled Peptide James Jones (Dstl) Decoupled trans

  30. Astrid Knuhtsen µ -KIIIA i - i +7 Stapled Peptide Circular Dichroism H helicity (222 nm) H 20000 θ (deg * cm 2 * dmol -1 ) 25% 10000 Ac X K W A R D H X R NH 2 H Cis 0 Trans H 200 220 240 260 40% nm -10000 Ac X K W A R D H X R NH 2 ( h Na V 1.4 ion channel) 100 Channel activity (% of control) 75 50 25 0 -7 -6 -5 -4 [Mimetic] M

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend