anomalies and discrete chiral symmetries
play

Anomalies and discrete chiral symmetries Michael Creutz BNL & - PowerPoint PPT Presentation

Anomalies and discrete chiral symmetries Michael Creutz BNL & U. Mainz Three sources of chiral symmetry breaking in QCD spontaneous breaking = 0 explains lightness of pions implicit breaking of U (1) by the anomaly


  1. Anomalies and discrete chiral symmetries Michael Creutz BNL & U. Mainz Three sources of chiral symmetry breaking in QCD spontaneous breaking � ψψ � � = 0 • explains lightness of pions • implicit breaking of U (1) by the anomaly • explains why η ′ is not so light • explicit breaking from quark masses • pions are not exactly massless • Rich physics from the interplay of these three effects Michael Creutz BNL & U. Mainz 1

  2. Talk based on very old ideas Dashen, 1971: possible spontaneous strong CP violation • before QCD! • ’t Hooft, 1976: ties between anomaly and gauge field topology • Fujikawa, 1979: fermion measure and the anomaly • Witten, 1980: connections with effective Lagrangians • MC 1995: Why is chiral symmetry so hard on the lattice • Why rehash old ideas? consequences have recently raised bitter controversies • Michael Creutz BNL & U. Mainz 2

  3. Axial anomaly in N f flavor massless QCD leaves behind a residual Z N f flavor-singlet chiral symmetry • tied to gauge field topology and the QCD theta parameter • Consequences degenerate m � = 0 quarks: first-order transition at Θ = π • sign of mass relevant for odd N f : perturbation theory incomplete • • N f = 1 : no symmetry for mass protection  • m u = 0 cannot solve the strong CP problem     controversial nontrivial N f dependence: •   invalidates rooting  •  Michael Creutz BNL & U. Mainz 3

  4. Consider QCD with N f light quarks and assume the field theory exists and confines • spontaneous chiral symmetry breaking � ψψ � � = 0 • • SU ( N f ) × SU ( N f ) chiral perturbation theory makes sense anomaly gives η ′ a mass • • N f small enough to avoid any conformal phase Use continuum language imagine some non-perturbative regulator in place (lattice?) • momentum space cutoff much larger than Λ QCD • lattice spacing a much smaller than 1 / Λ QCD • Michael Creutz BNL & U. Mainz 4

  5. Construct effective potential V for meson fields • V represents vacuum energy density for a given field expectation formally via a Legendre transformation • assume regulator allows defining composite fields • For simplicity initially consider degenerate quarks with small mass m • • N f even interesting subtleties for odd N f • Michael Creutz BNL & U. Mainz 5

  6. Work with composite fields • σ ∼ ψψ λ α : Gell-Mann matrices for SU ( N f ) • π α ∼ iψλ α γ 5 ψ • η ′ ∼ iψγ 5 ψ σ V( ) Spontaneous symmetry breaking at m = 0 • V ( σ ) has a double well structure vacuum has � σ � = v � = 0 • minimum of V ( σ ) = ± v • σ Ignore convexity issues phase separation occurs in a concave regions • Michael Creutz BNL & U. Mainz 6

  7. Nonsinglet pseudoscalars are Goldstone bosons symmetry under flavored rotations • σ → cos( φ ) σ + sin( φ ) π α • ( N f = 2) π α → cos( φ ) π α − sin( φ ) σ • ψ → e iφγ 5 λ α ψ potential has N 2 f − 1 ‘‘flat’’ directions • one for each generator of SU ( N f ) • V π σ Michael Creutz BNL & U. Mainz 7

  8. Small mass selects vacuum • V → V − mσ • � σ � ∼ + v � π � = 0 Goldstones acquire mass ∼ √ m • V π σ Michael Creutz BNL & U. Mainz 8

  9. Anomaly gives the η ′ a mass even if m q = 0 • m η ′ = O (Λ QCD ) • V ( σ, η ′ ) not symmetric under • ψ → e iφγ 5 ψ • σ → σ cos( φ ) + η ′ sin( φ ) • η ′ → − σ sin( φ ) + η ′ cos( φ ) Expand the effective potential near the vacuum state σ ∼ v and η ′ ∼ 0 η ′ η ′ 2 + O (( σ − v ) 3 , η ′ 4 ) σ ( σ − v ) 2 + m 2 • V ( σ, η ′ ) = m 2 both masses of order Λ QCD • Michael Creutz BNL & U. Mainz 9

  10. In quark language Classical symmetry • ψ → e iφγ 5 / 2 ψ • ψ → ψe iφγ 5 / 2 mixes σ and η ′ • • σ → σ cos( φ ) + η ′ sin( φ ) • η ′ → − σ sin( φ ) + η ′ cos( φ ) This symmetry is ‘‘anomalous’’ any valid regulator must break chiral symmetry • remnant of the breaking survives in the continuum • Michael Creutz BNL & U. Mainz 10

  11. Variable change alters fermion measure • dψ → | e − iφγ 5 / 2 | dψ = e − iφ Tr γ 5 / 2 dψ But doesn’t Tr γ 5 = 0 ??? Fujikawa: Not in the regulated theory!!! � γ 5 e D 2 / Λ 2 � i.e. • lim Λ →∞ Tr � = 0 Dirac action ψ ( D + m ) ψ • D † = − D = γ 5 Dγ 5 Use eigenstates of D to define Tr γ 5 • D | ψ i � = λ i | ψ i � • Tr γ 5 = � i � ψ i | γ 5 | ψ i � Michael Creutz BNL & U. Mainz 11

  12. Index theorem with gauge winding ν , D has ν zero modes D | ψ i � = 0 • modes are chiral: γ 5 | ψ i � = ±| ψ i � • • ν = n + − n − Non-zero eigenstates in chiral pairs • D | ψ � = λ | ψ � • Dγ 5 | ψ � = − λγ 5 | ψ � = λ ∗ γ 5 | ψ � Space spanned by | ψ � and | γ 5 ψ � gives no contribution to Tr γ 5 • � ψ | γ 5 | ψ � = 0 when λ � = 0 only the zero modes count! • Tr γ 5 = � i � ψ i | γ 5 | ψ i � = ν Michael Creutz BNL & U. Mainz 12

  13. Where did the opposite chirality states go? continuum: lost at ‘‘infinity’’ ‘‘above the cutoff’’ • Wilson: real eigenvalues in doubler region • overlap: modes on opposite side of unitarity circle • • Dγ 5 = − ˆ γ 5 D Tr ˆ γ 5 = 2 ν This phenomenon involves both short and long distances zero modes compensated by modes lost at the cutoff • Cannot uniquely separate perturbative and non-perturbative effects small instantons can ‘‘fall through the lattice’’ • scheme and scale dependent • Michael Creutz BNL & U. Mainz 13

  14. Back to effective field language At least two minima in the σ, η ′ plane ( σ, η ′ ) = (0 , ± v ) η ? σ −v v ? Question: do we know anything else about the potential in the σ, η ′ plane? • Yes! there are actually N f equivalent minima • Michael Creutz BNL & U. Mainz 14

  15. Define ψ L = 1+ γ 5 ψ 2 Singlet rotation ψ L → e iφ ψ L not a good symmetry for generic φ • Flavored rotation ψ L → g L ψ L = e iφ α λ α ψ L is a symmetry for g L ∈ SU ( N f ) • For special discrete values of φ these rotations can cross • g = e 2 πi/N f ∈ Z N f ⊂ SU ( N f ) A valid discrete singlet symmetry: σ → + σ cos(2 π/N f ) + η ′ sin(2 π/N f ) η ′ → − σ sin(2 π/N f ) + η ′ cos(2 π/N f ) Michael Creutz BNL & U. Mainz 15

  16. V ( σ, η ′ ) has a Z N f symmetry • N f equivalent minima in the ( σ, η ′ ) plane • N f = 4 : η V 1 σ V V 2 0 V 3 At the chiral lagrangian level • Z N is a subgroup of both SU ( N ) and U (1) At the quark level measure gets a contribution from each flavor (’t Hooft vertex) • • ψ L → e 2 πi/N f ψ L is a valid symmetry Michael Creutz BNL & U. Mainz 16

  17. η V 1 σ V V 2 0 V 3 Mass term mψψ tilts effective potential picks one vacuum ( v 0 ) as the lowest • in n ’th minimum m 2 • π ∼ m cos(2 πn/N f ) highest minima are unstable in the π α direction • multiple meta-stable minima when N f > 4 • Michael Creutz BNL & U. Mainz 17

  18. Anomalous rotation of the mass term • mψψ → m cos( φ ) ψψ + im sin( φ ) ψγ 5 ψ twists tilt away from the σ direction • An inequivalent theory! η m V 1 φ σ V V 0 2 V 3 as φ increases, vacuum jumps from one minimum to the next • Michael Creutz BNL & U. Mainz 18

  19. Here each flavor has been given the same phase Conventional notation uses Θ = N f φ • • Z N f symmetry implies 2 π periodicity in Θ Degenerate light quarks ⇒ first order transition at Θ = π η Θ = π V 1 σ V V 0 2 V 3 Michael Creutz BNL & U. Mainz 19

  20. � � Discrete symmetry in mass parameter space m → m exp 2 πiγ 5 N f for N f = 4 : • • mψψ and imψγ 5 ψ mass terms give equivalent theories true if and only if N f is a multiple of 4 • η V 1 σ V V 2 0 V 3 Michael Creutz BNL & U. Mainz 20

  21. η Odd number of flavors, N f = 2 N + 1 • − 1 is not in SU (2 N + 1) N =3 f V 1 • m > 0 and m < 0 not equivalent! σ • m < 0 represents Θ = π V 0 an inequivalent theory • spontaneous CP violation: � η ′ � � = 0 • V 2 Inequivalent theories can have identical perturbative expansions! Theta dependence invisible to perturbation theory • Michael Creutz BNL & U. Mainz 21

  22. Center of SU ( N f ) is a subgroup of U (1) 10,000 random SU (3) and SU (4) matrices: • 3 4 SU(3) SU(4) 2 3 2 1 1 Im Tr g Im Tr g 0 0 -1 -1 -2 -2 -3 -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 Re Tr g Re Tr g region for SU (3) bounded by exp( iφλ 8 ) • all SU ( N ) points enclosed by the U (1) circle e iφ • boundary reached at center elements • Michael Creutz BNL & U. Mainz 22

  23. η N f = 1 : No chiral symmetry at all! N =1 f unique vacuum • σ • � ψψ � ∼ � σ � � = 0 from ’t Hooft vertex V 0 not a spontaneous symmetry breaking • No singularity at m = 0 • m = 0 not protected: ‘‘renormalon’’ ambiguity For small mass no first order transition at Θ = π • larger masses? • N f = 0 : pure gauge theory • Θ = π behavior unknown Michael Creutz BNL & U. Mainz 23

  24. Michael Creutz BNL & U. Mainz 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend