and edms energy frontier
play

and EDMs: Energy Frontier 0 Connections M.J. Ramsey-Musolf U Mass - PowerPoint PPT Presentation

and EDMs: Energy Frontier 0 Connections M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ DBD Topical Collaboration Meeting, February 2017 1 Goals For This Talk Provide some context for the heavy


  1. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Theory Challenge: matrix elements Mechanism: does light ν M + mechanism exchange dominate ? EFF = 2 m k e 2 i δ ∑ m ν U ek k − − e e − − e e O(1) for Λ ~ TeV 0 ν M χ − W − W u − e ˜ − ˜ u e u u How to calc effects reliably ? d d d How to disentangle H & L ? d 40

  2. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana LNV at the LHC Theory Challenge: matrix elements + mechanism EFF = 2 m k e 2 i δ ∑ m ν U ek k − − e e − − e e 0 ν M χ − W − W u − e ˜ − ˜ u e u u d d d LNV d 41

  3. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana General Classification: Helo et al, PRD 88.011901, 88.073011 42

  4. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana General Classification: Helo et al, PRD 88.011901, 88.073011 SUSY: R Parity-Violation d d e e ~ ~ Sfermion q , l ~ ~ ~ F V F ~ Gaugino g , χ Majorana u u 43

  5. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana General Classification: Helo et al, PRD 88.011901, 88.073011 SUSY: R Parity-Violation d d e e ~ ~ Sfermion q , l ~ ~ ~ F V F ~ Gaugino g , χ Majorana LNV u u 44

  6. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana General Classification: Helo et al, PRD 88.011901, 88.073011 SUSY: R Parity-Violation d d e e ~ ~ ~ F V F LNV u u 45

  7. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana General Classification: Helo et al, PRD 88.011901, 88.073011 SUSY: R Parity-Violation d d e e ~ ~ ~ F V F LNV u u 46

  8. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Other Models: Back Up Slides 47

  9. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana What can we learn from the LHC? 48

  10. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana LHC Production LHC: pp ! jj e - e - LHC: pp ! jjj e - e - 49

  11. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana LHC Production & 0 νββ -Decay 76 Ge τ (0 ν ) LHC exclusion Helo et al, PRD 88.011901, 88.073011 50

  12. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana d u Illustrative Simplified S + e − Model: LHC: pp ! jj e - e - F 0 e − variant form: S + d u Y -1/6 -1/3 1/2 1/2 0 -1/2 d u e − 0 νββ - decay D T = ( S + , S 0 ) e − d u 51

  13. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana variant form: Helo et al claim: Y -1/6 -1/3 1/2 1/2 0 -1/2 g eff ð S Þ ¼ ð g 1 g 2 Þ 1 = 2 : Fig. 11 C j = g j S m c Þ 1 = 5 ; M eff ð S Þ ¼ ð m 4 g 52 ;

  14. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana variant form: Helo et al claim: EXO exclusion Y -1/6 -1/3 1/2 1/2 0 -1/2 g eff ð S Þ ¼ ð g 1 g 2 Þ 1 = 2 : Future Xe: T 1/2 > 10 27 yr Fig. 11 C j = g j S m c Þ 1 = 5 ; M eff ð S Þ ¼ ð m 4 g 53 ;

  15. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana variant form: Helo et al claim: EXO exclusion Y -1/6 -1/3 1/2 1/2 0 -1/2 LHC: pp ! jj e - e - g eff ð S Þ ¼ ð g 1 g 2 Þ 1 = 2 : Future Xe: T 1/2 > 10 27 yr 300 fb -1 : < 3 events Fig. 11 C j = g j S m c Þ 1 = 5 ; M eff ð S Þ ¼ ð m 4 g 54 ;

  16. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana TeV Scale LNV d u Can it be discovered e − 0 νββ - decay with combination of e − νββ & LHC searches ? 0 νβ d u d u Simplified models S + e − LHC: pp ! jj e - e - F 0 e − S + 55 d u

  17. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana TeV Scale LNV d u Effective operators: e − 0 νββ - decay e − d u d u S + e − LHC: pp ! jj e - e - F 0 0 νββ -decay as fu g g e ff = C 1 ( Λ ) 1 / 4 e − S + 56 d u . We use a prospec

  18. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Our reanalysis: • Include backgrounds • Incorporate QCD running • Include long-distance contributions to nuclear matrix elements T. Peng, MJRM, P. Winslow, 1508.04444 57

  19. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: • Charge flip • Jet faking electron 58

  20. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: g e + e - Z • Charge flip e + • Jet faking electron e - g e + transfers most of p T to conversion e - ; Z / γ * + jets ! apparent e - e - jj event 59

  21. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: e + e - b W t g • Charge flip e + ν W • Jet faking electron ν t b e - e + transfers most of p T to conversion e - ; b’s not tagged ! apparent e - e - jj event 60 48

  22. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: Bin in η and apply charge flip prob 61

  23. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: Jet fakes 62

  24. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Cuts Backgrounds: • H T • MET • M ll 63

  25. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Cuts Backgrounds: 64

  26. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Low energy: Running 65

  27. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana QCD Running Low energy: 66

  28. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana QCD Running Low energy: 67

  29. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana QCD Running Low energy: Assuming C k = 1 at µ = 5 GeV ! Effective DBD amplitude for O 1 substantially weaker for given LHC constraints 68

  30. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Nuclear Matrix Elements: Long Range Effects Low energy: Exploit Chiral Symmetry & EFT ideas 69

  31. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Nuclear Matrix Elements: Long Range Effects Low energy: Our work Helo et al Exploit Chiral Symmetry & EFT ideas 70

  32. νββ -Decay: TeV Scale LNV 0 νβ Putting the pieces together 71

  33. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV 72 T. Peng, MRM, P. Winslow 1508.04444

  34. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − Present Tonne scale F S S ( ) ( ) A Z , N A Z − 2, N + 2 73 T. Peng, MRM, P. Winslow 1508.04444 16

  35. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − Present Tonne scale F S S Nuc & had matrix elements ( ) ( ) A Z , N A Z − 2, N + 2 74 T. Peng, MRM, P. Winslow 1508.04444 16

  36. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − Present Tonne scale F LHC: ee jj S S ( ) ( ) A Z , N A Z − 2, N + 2 75 T. Peng, MRM, P. Winslow 1508.04444 16

  37. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − Present Tonne scale F ~2018 S S >2024 ( ) ( ) A Z , N A Z − 2, N + 2 76 T. Peng, MRM, P. Winslow 1508.04444 16

  38. νββ -Decay: TeV Scale LNV & m ν 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Implications for m ν : Controls m ν Schecter-Valle: non-vanishing Simplified model: possible Majorana mass at (multi) loop level (larger) one loop Majorana mass 77

  39. νββ -Decay: TeV Scale LNV & m ν 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Implications for m ν : Ton Scale Signal m ν (loop) 78 A hypothetical scenario

  40. νββ / LHC Interplay: Matrix Elements 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Benchmark Sensitivity: TeV LNV e − e − F S S Assume GERDA present limit & different Nuc/Had MEs ( ) ( ) A Z , N A Z − 2, N + 2 79 T. Peng, MRM, P. Winslow 1508.04444 16

  41. V. EDMs & the LHC: Higgs Portal CPV 80

  42. EDMs & SM Physics d n ~ (10 -16 e cm) x θ QCD + d n CKM 81

  43. EDMs & SM Physics d n ~ (10 -16 e cm) x θ QCD + d n CKM d n CKM = (1 – 6) x 10 -32 e cm C. Seng arXiv: 1411.1476 82

  44. EDMs & BSM Physics d ~ (10 -16 e cm) x ( υ / Λ ) 2 x sin φ x y f F 83

  45. EDMs & BSM Physics d ~ (10 -16 e cm) x ( υ / Λ ) 2 x sin φ x y f F CPV Phase: large enough for baryogenesis ? 84

  46. EDMs & BSM Physics d ~ (10 -16 e cm) x ( υ / Λ ) 2 x sin φ x y f F BSM mass scale: TeV ? Much higher ? 85

  47. EDMs & BSM Physics d ~ (10 -16 e cm) x ( υ / Λ ) 2 x sin φ x y f F BSM dynamics: perturbative? Strongly coupled? 86

  48. EDMs & BSM Physics d ~ (10 -16 e cm) x ( υ / Λ ) 2 x sin φ x y f F BSM dynamics: perturbative? Strongly coupled? Hadronic & atomic systems: reliable SM calc’s? 87

  49. EDMs & BSM Physics d ~ (10 -16 e cm) x ( υ / Λ ) 2 x sin φ x y f F Need information from at least three “frontiers” 88

  50. EDMs & BSM Physics d ~ (10 -16 e cm) x ( υ / Λ ) 2 x sin φ x y f F Need information from at least three “frontiers” • Baryon asymmetry Cosmic Frontier • High energy collisions Energy Frontier • EDMs Intensity Frontier 89

  51. EDM/LHC Complementarity 90

  52. The Higgs Portal 91

  53. Inoue, R-M, Zhang: Higgs Portal CPV 1403.4257 CPV & 2HDM: Type I & II λ 6,7 = 0 for simplicity 2 φ 1 ) + 1 = λ 1 1 φ 1 ) 2 + λ 2 2 φ 2 ) 2 + λ 3 ( φ † h 1 φ 2 ) 2 + h . c . i 2 ( φ † 2 ( φ † 1 φ 1 )( φ † 2 φ 2 ) + λ 4 ( φ † 1 φ 2 )( φ † λ 5 ( φ † V 2 − 1 n h i o 11 ( φ † 12 ( φ † 22 ( φ † m 2 m 2 + m 2 1 φ 1 ) + 1 φ 2 ) + h . c . 2 φ 2 ) . 2 � � EWSB � λ 5 v 1 v 2 5 ( m 2 12 ) 2 ⇤ ⇥ 1 � δ 1 = Arg λ ⇤ , � � m 2 � 12 δ 2 ⇡ δ 1 � � 5 ( m 2 ⇥ ⇤ λ ⇤ 12 ) v 1 v ⇤ δ 2 = Arg � λ 5 v 1 v 2 1 � 2 � � 2 m 2 � 12 γ H 0 /H + W ± H ⌥ f f � f 92

  54. Future Reach: Higgs Portal CPV CPV & 2HDM: Type II illustration λ 6,7 = 0 for simplicity Hg ThO n Ra Present Future: Future: d n x 0.1 d n x 0.01 d A (Hg) x 0.1 d A (Hg) x 0.1 d ThO x 0.1 d ThO x 0.1 sin α b : CPV d A (Ra) d A (Ra) [10 -27 e cm] scalar mixing 93 Inoue, R-M, Zhang: 1403.4257

  55. Higgs Portal CPV: EDMs & LHC CPV & 2HDM: Type II illustration λ 6,7 = 0 for simplicity Hg ThO n LHC Current Ra M h2 = 400 GeV Dawson et al: 1503.01114 Present Future: Future: d n x 0.1 d n x 0.01 d A (Hg) x 0.1 d A (Hg) x 0.1 d ThO x 0.1 d ThO x 0.1 sin α b : CPV d A (Ra) [10 -27 e cm] d A (Ra) scalar mixing 94 Inoue, R-M, Zhang: 1403.4257

  56. Higgs Portal CPV: EDMs & LHC CPV & 2HDM: Type II illustration λ 6,7 = 0 for simplicity Hg ThO n LHC Future ? Ra M h2 = 400 GeV Dawson et al: 1503.01114 Present Future: Future: d n x 0.1 d n x 0.01 d A (Hg) x 0.1 d A (Hg) x 0.1 d ThO x 0.1 d ThO x 0.1 sin α b : CPV d A (Ra) d A (Ra) [10 -27 e cm] scalar mixing 95 Inoue, R-M, Zhang: 1403.4257

  57. Higgs Portal CPV: EDMs & LHC CPV & 2HDM: Type II illustration λ 6,7 = 0 for simplicity Current d n LHC 100 fb -1 Hg LHC 300 fb -1 ThO Run II n Ra Chen, Li, RM preliminary M h2 = 550 GeV Present Future: Future: d n x 0.1 d n x 0.01 d A (Hg) x 0.1 d A (Hg) x 0.1 d ThO x 0.1 d ThO x 0.1 sin α b : CPV d A (Ra) d A (Ra) [10 -27 e cm] scalar mixing 96 Inoue, R-M, Zhang: 1403.4257

  58. Low-Energy / High-Energy Interplay Higgs Portal CPV Discovery “Diagnostic” ? Low energy High energy 97

  59. Hadronic & Nuclear Matrix Elements 98

  60. Hadronic Matrix Elements Engel, R-M, 99 van Kolck ‘ 13

  61. Hadronic Matrix Elements (CEDM) Engel, R-M, 100 van Kolck ‘ 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend