analysis of tandem fluid queues
play

Analysis of tandem fluid queues Magorzata OReilly 1 Werner - PowerPoint PPT Presentation

Model and preliminaries Analysis and numerics Analysis of tandem fluid queues Magorzata OReilly 1 Werner Scheinhardt 2 1 Discipline of Mathematics, University of Tasmania 2 Department of Applied Mathematics, University of Twente MAM 2016


  1. Model and preliminaries Analysis and numerics Analysis of tandem fluid queues Małgorzata O’Reilly 1 Werner Scheinhardt 2 1 Discipline of Mathematics, University of Tasmania 2 Department of Applied Mathematics, University of Twente MAM 2016 1/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  2. Model and preliminaries Analysis and numerics Outline Model and preliminaries 1 Analysis and numerics 2 2/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  3. Model and preliminaries Analysis and numerics Outline Model and preliminaries 1 Analysis and numerics 2 3/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  4. Model and preliminaries Analysis and numerics Model: two fluid queues driven by ϕ ( t ) CTMC ϕ ( t ) with finite state space S , generator T Two fluid queues, contents X ( t ) and Y ( t ) , both ∈ [ 0 , ∞ ) 4/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  5. Model and preliminaries Analysis and numerics First queue X ( t ) driven by ϕ ( t ) ( ϕ ( t ) , X ( t )) is standard fluid queue Fluid rates in R = diag ( r i ) i ∈S d dt X ( t ) = r ϕ ( t ) when X ( t ) > 0 , d dt X ( t ) = max ( 0 , r ϕ ( t ) ) when X ( t ) = 0 . S = S + ∪ S − ∪ S � , e.g. S + = { i ∈ S : r i > 0 } (upstates, downstates, zero-states) also: S ⊖ = S − ∪ S � (“zero-states at X ( t ) = 0”) after ordering,   T ++ T + − T + �   . T = T − + T −− T − � T � + T � − T �� 5/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  6. Model and preliminaries Analysis and numerics Second queue Y ( t ) driven by ( ϕ ( t ) , X ( t )) � Y ( t ) increases when X ( t ) > 0, at rate � c i > 0 Y ( t ) decreases when X ( t ) = 0, at rate c i < 0 (unless Y ( t ) = 0) So � d dt Y ( t ) = � c ϕ ( t ) > 0 when X ( t ) > 0 , d dt Y ( t ) = c ϕ ( t ) < 0 when X ( t ) = 0 , Y ( t ) > 0 , � d � dt Y ( t ) = � c ϕ ( t ) · 1 { ϕ ( t ) ∈ S + } when X ( t ) = 0 , Y ( t ) = 0 . � C = diag ( � c i ) i ∈S and C = diag ( c i ) i ∈S 6/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  7. � C i <0 ^ r i <0 r i >0 C i >0 Model and preliminaries Analysis and numerics � Special case: S � = ∅ , |S + | = |S − | = 1 , C = − C = I Y(t) X(t) t Y(t) v t X(t) [Kroese and Scheinhardt. Joint Distributions for Interacting Fluid Queues, Queueing Systems , 2001] 7/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  8. r i >0 r i <0 C i >0 ^ C i <0 Model and preliminaries Analysis and numerics Qualitative behaviour Y(t) X(t) t Y(t) v t X(t) Assuming stability (see paper) process ( ϕ ( t ) , X ( t ) , Y ( t )) alternates between: (i) periods on x = 0 (ii) periods on x > 0 8/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  9. r i >0 r i <0 C i >0 ^ C i <0 Model and preliminaries Analysis and numerics Qualitative behaviour (i) on x = 0 Y(t) X(t) t Y(t) v t X(t) (i) periods on x = 0 Y ( t ) decreasing, unless at x = 0 , y = 0 ϕ ( t ) in S ⊖ starts at x = 0 , y > 0, with ϕ ( t ) in S − ends at x = 0 , y ≥ 0, with ϕ ( t ) jumping from S ⊖ to S + 9/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  10. r i >0 r i <0 C i >0 ^ C i <0 Model and preliminaries Analysis and numerics Qualitative behaviour (ii) on x > 0 Y(t) X(t) t Y(t) v t X(t) (ii) periods on x > 0 Y ( t ) increasing (while X ( t ) can either increase or decrease) ϕ ( t ) in S (any phase) starts at x = 0 , y ≥ 0, with ϕ ( t ) ∈ S + ends at x = 0 , y > 0, with ϕ ( t ) ∈ S − 10/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  11. Model and preliminaries Analysis and numerics Stationary distribution has following form (all vectors with |S| components): (i) 1-dimensional densities π ( 0 , y ) at x = 0 , y > 0 point masses p ( 0 , 0 ) at ( 0 , 0 ) (ii) 2-dimensional densities π ( x , y ) on { ( x , y ) : x > 0 , y > x · min i ∈S + { � c i / r i }} 1-dimensional density π i ( x , x � c i / r i ) on line y = x � c i / r i , i ∈ S + 11/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  12. Model and preliminaries Analysis and numerics Outline Model and preliminaries 1 Analysis and numerics 2 12/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  13. Model and preliminaries Analysis and numerics Approach Several steps: Introduce embedded discrete-time process J k Find its stationary distribution ξ y Take a deep breath... Express π ( 0 , y ) and p ( 0 , 0 ) in ξ y , using down-shift in Y Normalise based on knowledge of ( ϕ ( t ) , X ( t )) Express π ( x , y ) in π ( 0 , y ) and p ( 0 , 0 ) , using up-shift in Y Express π i ( x , x � c i / r i ) in p ( 0 , 0 ) Mostly as LST’s (but not always) 13/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  14. Model and preliminaries Analysis and numerics Approach Several steps: Introduce embedded discrete-time process J k Find its stationary distribution ξ y Take a deep breath... Express π ( 0 , y ) and p ( 0 , 0 ) in ξ y , using down-shift in Y Normalise based on knowledge of ( ϕ ( t ) , X ( t )) Express π ( x , y ) in π ( 0 , y ) and p ( 0 , 0 ) , using up-shift in Y Express π i ( x , x � c i / r i ) in p ( 0 , 0 ) Mostly as LST’s (but not always) 13/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  15. Model and preliminaries Analysis and numerics Approach Several steps: Introduce embedded discrete-time process J k Find its stationary distribution ξ y Take a deep breath... Express π ( 0 , y ) and p ( 0 , 0 ) in ξ y , using down-shift in Y Normalise based on knowledge of ( ϕ ( t ) , X ( t )) Express π ( x , y ) in π ( 0 , y ) and p ( 0 , 0 ) , using up-shift in Y Express π i ( x , x � c i / r i ) in p ( 0 , 0 ) Mostly as LST’s (but not always) 13/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  16. � � Model and preliminaries Analysis and numerics Intermezzo (i) on down-shift: Q ⊖⊖ and Q ⊖ + � � Define generator matrix C ⊖ | ) − 1 T ⊖⊖ , Q ⊖⊖ = ( | then for i , j ∈ S ⊖ , and z > 0 , � Q ⊖⊖ z ] ij = P ( ϕ ( t z ) = j , ϕ ( u ) ∈ S ⊖ , 0 ≤ u ≤ t z | ϕ ( 0 ) = i , X ( 0 ) = 0 ) � � [ e Also, C ⊖ | ) − 1 T ⊖ + , Q ⊖ + = ( | is a matrix of transition rates (w.r.t. level) to phases in S + (for times at which X and Y start increasing) [Bean, O’Reilly and Taylor. Hitting probabilities and hitting times for stochastic fluid flows, SPA 2005] 14/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  17. Model and preliminaries Analysis and numerics Intermezzo (ii) on up-shift: � Q ( s ) and � Ψ ( s ) � t Let θ = inf { t > 0 : X ( t ) = 0 } and U ( t ) = u = 0 � c ϕ ( u ) du , then U ( θ ) is total up-shift in Y during Busy Period of X Its |S + | × |S − | density matrix � ψ ( z ) is given via LST � ∞ e − sz � � Ψ ( s ) = ψ ( z ) dz , z = 0 as [ � Ψ ( s )] ij = E ( e − sU ( θ ) 1 { ϕ ( θ ) = j } | ϕ ( 0 ) = i , X ( 0 ) = 0 ) , [Bean and O’Reilly. A stochastic two-dimensional fluid model, Stochastic Models , 2013] 15/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  18. Model and preliminaries Analysis and numerics Intermezzo (ii) on up-shift: � Q ( s ) and � Ψ ( s ) To find � Ψ ( s ) define Key generator matrix � Q ( s ) , as � � � � Q ( s ) ++ Q ( s ) + − � Q ( s ) = � � Q ( s ) − + Q ( s ) −− Q ( s ) ++ = ( R + ) − 1 � � � T ++ − s � C + − T + � ( T �� − s � C � ) − 1 T � + Q ( s ) + − = ( R + ) − 1 � � � T + − − T + � ( T �� − s � C � ) − 1 T � − Q ( s ) − + = ( | R − | ) − 1 � � � T − + − T − � ( T �� − s � C � ) − 1 T � + Q ( s ) −− = ( | R − | ) − 1 � � � T −− − s � C − − T − � ( T �� − s � C � ) − 1 T � − Then � Ψ ( s ) is minimum nonnegative solution of Riccati eq. Q ( s ) + − + � � Ψ ( s ) � Ψ ( s ) � Q ( s ) ++ � Ψ ( s ) + � Q ( s ) −− + � Q ( s ) − + � Ψ ( s ) = O , [Bean and O’Reilly. A stochastic two-dimensional fluid model, Stochastic Models , 2013] 16/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

  19. Model and preliminaries Analysis and numerics Back on track... Embedded process J k Let J k = ( ϕ ( θ k ) , Y ( θ k )) , with state space S − × ( 0 , ∞ ) , where θ k is k -th time that ( ϕ ( t ) , X ( t ) , Y ( t )) hits x = 0 Lemma � The transition kernel of J k is given by � � z � � � � Q ⊖ + � Q ⊖⊖ u P z , y = I O e ψ ( y − z + u ) du � u =[ z − y ] + � � Q ⊖ + � Q ⊖⊖ z ( − Q ⊖⊖ ) − 1 + I O e ψ ( y ) . � � where [ x ] + denotes max ( 0 , x ) , and I O is a |S − | × |S ⊖ | matrix. 17/33 Małgorzata O’Reilly, Werner Scheinhardt Analysis of tandem fluid queues

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend