orientations bipolaires et chemins tandem
play

Orientations bipolaires et chemins tandem Eric Fusy (CNRS/LIX) - PowerPoint PPT Presentation

Orientations bipolaires et chemins tandem Eric Fusy (CNRS/LIX) Travaux avec Mireille Bousquet-M elou et Kilian Raschel Journ ees Alea, 2017 Tandem walks A tandem-walk is a walk in Z 2 with step-set { N, W, SE } in the plane Z 2 in the


  1. Orientations bipolaires et chemins tandem ´ Eric Fusy (CNRS/LIX) Travaux avec Mireille Bousquet-M´ elou et Kilian Raschel Journ´ ees Alea, 2017

  2. Tandem walks A tandem-walk is a walk in Z 2 with step-set { N, W, SE } in the plane Z 2 in the half-plane { y ≥ 0 } in the quarter plane N 2 cf 2 queues in series SE N W y x

  3. Link to Young tableaux of height ≤ 3 • There is a bijection between: tandem walks of length n staying in the quadrant N 2 , ending at ( i, j ) � Young tableaux of size n and height ≤ 3 , of shape j i 1 2 5 8 9 1 N 1 1 2 1 3 3 6 7 1 1 1 SE 0 1 3 5 6 2 9 1 0 3 end 4 1 2 W 4 7 8 1 tableau start walk (after k steps, current y = # N − # SE , current x = # SE − # W )

  4. Link to Young tableaux of height ≤ 3 • There is a bijection between: tandem walks of length n staying in the quadrant N 2 , ending at ( i, j ) � Young tableaux of size n and height ≤ 3 , of shape j i m 1 2 5 8 9 1 N 1 1 2 1 3 3 6 7 1 1 1 SE 0 1 3 5 6 2 9 1 0 3 end 4 1 2 W 4 7 8 1 tableau start walk (after k steps, current y = # N − # SE , current x = # SE − # W ) • Let q [ n ; i, j ] := # tandem walks of length n in N 2 , ending at ( i, j ) Hook-length formula: for n of the form n = 3 m + 2 i + j we have ( i + 1)( j + 1)( i + j + 2) n q [ n ; i, j ] = m !( m + i + 1)!( m + i + j + 2)!

  5. Algebraicity when the endpoint is free � q [ n ; i, j ] t n x i y j Let Q ( t ; x, y ) = n,i,j Theorem: [Gouyou-Beauchamps’89], [Bousquet-M´ elou,Mishna’10] Then Q ( t, 1 , 1) is the series counting Motzkin walks, Y = t · (1 + Y + Y 2 ) i.e., Y ≡ t Q ( t, 1 , 1) satisfies t · Y 2 = + + Y t · Y t

  6. Bijection with Motzkin walks [Gouyou-Beauchamps’89] 1 2 1 2 5 8 9 1 1 1 3 1 1 6 2 5 9 1 0 3 6 7 1 0 1 3 3 4 4 1 2 7 8 1 Young tableau tandem walk in N 2 tandem walk in N 2 of height ≤ 3

  7. Bijection with Motzkin walks [Gouyou-Beauchamps’89] 1 2 1 2 5 8 9 1 1 1 3 1 1 6 2 5 9 1 0 3 6 7 1 0 1 3 3 Robinson 4 4 1 2 7 Schensted 8 1 Young tableau tandem walk in N 2 tandem walk in N 2 involution of height ≤ 3 with no

  8. Bijection with Motzkin walks [Gouyou-Beauchamps’89] 1 2 1 2 5 8 9 1 1 1 3 1 1 6 2 5 9 1 0 3 6 7 1 0 1 3 3 Robinson 4 4 1 2 7 Schensted 8 1 Young tableau tandem walk in N 2 tandem walk in N 2 involution of height ≤ 3 with no matching with no nesting

  9. Bijection with Motzkin walks [Gouyou-Beauchamps’89] 1 2 1 2 5 8 9 1 1 1 3 1 1 6 2 5 9 1 0 3 6 7 1 0 1 3 3 Robinson 4 4 1 2 7 Schensted 8 1 Young tableau tandem walk in N 2 tandem walk in N 2 involution of height ≤ 3 with no no nesting FIFO Motzkin walk matching with no nesting

  10. Bijection with Motzkin walks [Gouyou-Beauchamps’89] 1 2 1 2 5 8 9 1 1 1 3 1 1 6 2 5 9 1 0 3 6 7 1 0 1 3 3 Robinson 4 4 1 2 7 Schensted 8 1 Young tableau tandem walk in N 2 tandem walk in N 2 involution of height ≤ 3 with no no nesting FIFO Motzkin walk LIFO matching no crossing with no nesting

  11. Reformulation with half-plane tandem-walks There is a bijection between: • tandem walks of length n staying in the quarter plane N 2 end start • tandem walks of length n � staying in the half-plane { y ≥ 0 } and ending at y = 0 y ⇔ start end t Rk: The bijection preserves the number of SE steps

  12. An extension of the walk model y General model: level 3 step-set : • the SE step level 2 • every step ( − i, j ) (with i, j ≥ 0 ) level 1 level := i + j x SE Example: 1 0 1 9 2 start end 3 8 4 7 5 6

  13. An extension of the walk model y General model: level 3 step-set : • the SE step level 2 • every step ( − i, j ) (with i, j ≥ 0 ) level 1 level := i + j x SE Example: 1 0 1 9 2 start end 3 8 4 7 5 6 There is still a bijection between: • general tandem walks of length n in the quarter plane N 2 • general tandem walks of length n in { y ≥ 0 } ending at y = 0 The bijection preserves the number of SE-steps and the number of steps in each level p ≥ 1

  14. Bipolar and marked bipolar orientations bipolar orientation: (on planar maps) = acyclic orientation with a unique source S and a unique sink N with S, N incident to the outer face N inner vertex S inner face

  15. Bipolar and marked bipolar orientations marked bipolar orientation: bipolar orientation: (on planar maps) a marked vertex A ′ � = N on left boundary = acyclic orientation a marked vertex A � = S on right boundary with a unique source S and a unique sink N with S, N incident to the outer face outdegree=1 N N inner vertex A A ′ S indegree=1 S inner face

  16. The Kenyon et al. bijection The Kenyon et al. bijection [Kenyon, Miller, Sheffield, Wilson’16] bijection general tandem-walk (in Z 2 ) marked bipolar orientation SE step black vertex inner face of degree i + j +2 step ( − i, j ) N = A N = A N = A 1 0 N = A N = A N 1 9 2 ′ ′ ′ 3 A A ′ ′ A A A 3 4 5 1 2 8 A ′ = S A 4 7 5 6 S S S S S N N N N N A A A 6 7 1 0 9 8 ′ ′ A A A ′ ′ ′ A A A A S S S S S

  17. The Kenyon et al. bijection [Kenyon, Miller, Sheffield, Wilson’16] • SE steps create a new black vertex N = A N = A N N A + SE-step + SE-step A A ′ A ′ A ′ A ′ S S S S • steps ( − i, j ) create a new inner face (of degree i + j + 2) N N N N A A ′ A ′ A ′ A A ′ A A S S S S

  18. Parameter-correspondence in the bijection # “face-steps” # inner faces of level p of degree p + 2 # SE-steps # black vertices 1 + # steps # plain edges (not dashed) N δ ′ δ L ′ +1 minimal abscissa L A start A ′ L ′ end L +1 δ δ ′ S minimal ordinate

  19. An involution on marked bipolar orientations N L ′ +1 δ A A ′ L +1 δ ′ S δ L ′ +1 L +1 δ ′

  20. An involution on marked bipolar orientations N N δ ′ L ′ +1 δ L ′ +1 A A A ′ A ′ L +1 δ ↔ δ ′ L +1 δ ′ δ mirror S S δ δ ′ L ′ +1 L ′ +1 L +1 L +1 δ ′ δ

  21. Effect of the involution on walks N N δ ′ δ L ′ +1 L ′ +1 A A involution A ′ A ′ L +1 L +1 δ ′ δ S S δ ↔ δ ′ minimal minimal δ ′ abscissa abscissa δ L L start start L ′ L ′ end end δ δ ′ minimal minimal ordinate ordinate

  22. Quarter plane walks ↔ half-plane walks ending at y = 0 minimal minimal δ ′ abscissa abscissa δ L L δ ↔ δ ′ start start L ′ L ′ end end δ δ ′ minimal minimal ordinate ordinate • Specialize the involution at { L ′ = 0 , δ ′ = 0 } δ δ L L

  23. Quarter plane walks ↔ half-plane walks ending at y = 0 minimal minimal δ ′ abscissa abscissa δ L L δ ↔ δ ′ start start L ′ L ′ end end δ δ ′ minimal minimal ordinate ordinate • Specialize the involution at { L ′ = 0 , δ ′ = 0 } δ δ L L • Specialize at { δ ′ ≤ a, L ′ ≤ b } ⇒ quarter plane walks starting at ( a, b )

  24. Generating function expressions level 3 level 2 level 1 level 0 SE Let Q ( t ) be the generating function of general tandem-walks in N 2 • counted w.r.t. the length (variable t ) • with a weight z i for each “face-step” of level i Y = t · (1 + w 0 Y + w 1 Y 2 + w 2 Y 3 + · · · ) Then Y ≡ t Q ( t ) is given by where w i = z i + z i +1 + z i +2 + · · ·

  25. Generating function expressions level 3 Y 4 level 2 Y 3 level 1 Y 2 level 0 Y SE Let Q ( t ) be the generating function of general tandem-walks in N 2 • counted w.r.t. the length (variable t ) • with a weight z i for each “face-step” of level i Y = t · (1 + w 0 Y + w 1 Y 2 + w 2 Y 3 + · · · ) Then Y ≡ t Q ( t ) is given by where w i = z i + z i +1 + z i +2 + · · ·

  26. Generating function expressions level 3 Y 4 level 2 Y 3 level 1 Y 2 level 0 Y SE Let Q ( t ) be the generating function of general tandem-walks in N 2 • counted w.r.t. the length (variable t ) • with a weight z i for each “face-step” of level i Y = t · (1 + w 0 Y + w 1 Y 2 + w 2 Y 3 + · · · ) Then Y ≡ t Q ( t ) is given by where w i = z i + z i +1 + z i +2 + · · · Rk: alternative proof (earlier!) with obstinate kernel method

  27. Generating function expressions level 3 Y 4 level 2 Y 3 level 1 Y 2 level 0 Y SE Let Q ( t ) be the generating function of general tandem-walks in N 2 • counted w.r.t. the length (variable t ) • with a weight z i for each “face-step” of level i Y = t · (1 + w 0 Y + w 1 Y 2 + w 2 Y 3 + · · · ) Then Y ≡ t Q ( t ) is given by where w i = z i + z i +1 + z i +2 + · · · Rk: alternative proof (earlier!) with obstinate kernel method Let Q ( a,b ) ( t ) := GF of general tandem walks in N 2 starting at ( a, b ) Rk: Then t Q ( a,b ) ( t ) = explicit polynomial in Y (with positive coefficients)

  28. Quarter plane walks ending at ( i, 0) n q [ n ; i, 0] t n counts bipolar orientation of the form The series F i ( t ) := � N root-face degree i +2 root i S with t for # edges, and weight z r for each inner face of degree 0 ≤ r ≤ p

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend