analysis computation for the semiclassical limits of the
play

Analysis & Computation for the Semiclassical Limits of the - PowerPoint PPT Presentation

Analysis & Computation for the Semiclassical Limits of the Nonlinear Schrodinger Equations Weizhu Bao Department of Mathematics & Center of Computational Science and Engineering National University of Singapore Email:


  1. Analysis & Computation for the Semiclassical Limits of the Nonlinear Schrodinger Equations Weizhu Bao Department of Mathematics & Center of Computational Science and Engineering National University of Singapore Email: bao@math.nus.edu.sg URL: http://www.math.nus.edu.sg/~bao

  2. Outline Motivation Semiclassical limits of ground and excited states – Matched asymptotic approximations – Numerical results Semiclassical limits of the dynamics of NLS – Formal limits – Efficient computation – Caustics & vacuum – Difficulties in rotating frame and system Conclusions

  3. Motivation: NLS The nonlinear Schr dinger (NLS) equation && o ε 2 r r ε ε ε ε ε ε ∂ ψ = − ∇ ψ + ψ + β ψ ψ 2 2 ( , ) ( ) | | i x t V x t 2 r x ∈ d ( R ) – t : time & : spatial coordinate ψ r ( , ) x t – : complex-valued wave function r – ( ) : real-valued external potential V x ε < ε – ฀ : scaled Planck constant (0 1) β = ± ( 0, 1) – : interaction constant • =0: linear; =1: repulsive interaction • = -1: attractive interaction

  4. Motivation In quantum physics & nonlinear optics: – Interaction between particles with quantum effect – Bose-Einstein condensation (BEC): bosons at low temperature – Superfluids: liquid Helium, – Propagation of laser beams, ……. In plasma physics; quantum chemistry; particle physics; biology; materials science; …. Conservation laws r r r r r r 2 2 2 2 ∫ ∫ ∫ ψ ε = ψ ε = ψ ε ≡ ψ ε = ψ ε = ψ ε = ( ) : ( , ) ( ,0) ( ) : ( ) ( 1), N x t d x x d x x d x N 0 0 d d d R R R ⎡ ⎤ ε 2 r r r r ∫ 2 2 4 ψ ε = ∇ ψ ε + ψ ε + β ψ ε ≡ ψ ε ( ) : ( , ) ( ) ( , ) ( , ) ( ) E ⎢ x t V x x t x t ⎥ d x E 2 0 ⎣ 2 ⎦ d R

  5. Semiclassical limits Suppose initial data chosen as r r r r r r r ε ε ε ε ε ε ε ε ε ψ = ψ = ⇒ ψ = 0 ( )/ ( , )/ iS x iS x t ( ,0) : ( ) ( ) ( , ) ( , ) x x A x e x t A x t e 0 0 ε → 0 Semiclassical limits: 2 ε ε ρ = ψ → : ???? – Density: r r r ε = ρ ε ε → ε = ∇ ε → – Current: : ??? : ??? J v v S – Other observable: Analysis: dispersive limits – WKB method vs Winger transform Efficient computation – Highly oscillatory wave in space & time

  6. For ground & excited states For special initial data: r r r r r ε ε = φ ε ε = ⇒ ψ ε = φ ε − μ ε / i t ( ) ( ) & ( ) 0 ( , ) ( ) A x x S x x t x e 0 0 Time-independent NLS: nonlinear eigenvalue problem ε 2 r r r r 2 2 ∫ μ φ ε ε = − ∇ φ ε + φ ε + β φ ε φ ε φ ε = φ ε = 2 2 ( ) ( ) | | , : ( ) 1 x V x x d x 2 d R – Eigenvalue (or chemical potential) ⎡ ⎤ ε 2 r r r r ∫ 2 2 4 μ ε = μ φ ε = ∇ φ ε + φ ε + β φ ε : ( ) : ( ) ( ) ( ) ( ) ⎢ ⎥ x V x x x d x ⎣ 2 ⎦ d R – Eigenfunctions are • Orthogonal in linear case & Superposition is valid for dynamics!! • Not orthogonal in nonlinear case !!!! No superposition for dynamics!!!

  7. For ground & excited states Ground state: minimizer of the nonconvex minimization problem { } ε = φ ε = φ ε = φ φ = φ < ∞ : ( ) min ( ), | 1, ( ) E E E S E g g ε φ ∈ S r β ≥ = ∞ – Existence: 0 & lim ( ) V x r →∞ | | x – Positive solution is unique Excited states: eigenfunctions with higher energy ε ε ε ε ε ε ε φ φ φ = φ μ = μ φ L L , , , , : ( ), : ( ) E E 1 2 j j j j j ε → Semiclassical limits 0 ε ε ε ε ε ε ε φ → → μ = μ φ → φ → → μ → ??? ??? : ( ) ??? ??? ??? ??? E E g g g g j j j ε < ε < ε < < ε < ⇒ μ ε < μ ε < μ ε < < μ ε < L L L L ????? E E E E 1 2 1 2 g j g j

  8. For ground state: Box Potential in 1D ≤ ≤ ⎧ 0, 0 1, x = = β = ⎨∞ ( ) 1, 1 V x d The potential: ⎩ , otherwise. The nonlinear eigenvalue problem (Bao,Lim,Zhang,Bull. Inst. Math., 05’) ε 2 ε ε ε ′′ ε ε μ φ = − φ + φ φ < < 2 ( ) ( ) ( ) | ( ) | ( ), 0 1, x x x x x 2 1 ∫ φ ε = φ ε = φ ε = 2 (0) (1) 0 with | ( ) | 1 x dx 0 Leading order approximation, i.e. drop the diffusion term < ε ฀ 0 1 μ φ = φ φ < < ⇒ φ = μ TF TF TF 2 TF TF TF ( ) | ( ) | ( ), 0 1, ( ) x x x x x g g g g g g 1 ∫ ⇓ φ = TF 2 | ( ) | 1 x dx g 0 1 φ ε ≈ φ = μ ε ≈ μ = ε ≈ = TF TF TF (x) ( ) x 1, 1, E E g g g g g g 2 – Boundary condition is NOT satisfied, i.e. φ = φ = ≠ TF TF (0) (1) 1 0 g g – Boundary layer near the boundary

  9. For ground state: Box Potential in 1D Matched asymptotic approximation ε – Consider near x=0, rescale = φ ε = μ ε Φ , ( ) ( ) x X x x g g μ ε g – We get 1 ′′ Φ = − Φ + Φ ≤ < ∞ Φ = Φ = 3 ( ) ( ) ( ), 0 ; (0) 0, lim ( ) 1 X X X X X 2 →∞ X – The inner solution μ Φ = ≤ < ∞ ⇒ φ ε ≈ μ ≤ = g ( ) tanh( ), 0 ( ) tanh( ), 0 (1) X X X x x x o ε g g – Matched asymptotic approximation for ground state ⎡ ⎤ μ μ μ MA MA MA ⎢ ⎥ φ ε ≈ φ = μ + − − ≤ ≤ g g g MA MA ( ) ( ) tanh( ) tanh( (1 )) tanh( ) , 0 1 x x x x x ε ε ε ⎢ ⎥ g g g ⎣ ⎦ 1 ∫ = φ ⇒ μ ε ≈ μ = + ε + ε + ε = μ + ε + ε + ε < ε MA 2 MA 2 2 TF 2 2 1 | ( ) | 1 2 1 2 2 1 2 , 0 ฀ 1. x dx g g g g 0

  10. For ground state: Box Potential in 1D – Approximate energy 1 4 ε ≈ = + ε + ε + ε MA 2 2 1 2 E E g g 2 3 E ε 1 = g lim , – Asymptotic ratios: ε μ ε → 2 0 g O ε ( ) – Width of the boundary layer: ε → 0 Semiclassical limits < < ⎧ 1 0 1 x 1 ε ε ε φ → φ = → μ → 0 ⎨ ( ) 1 x E = g g g g ⎩ 0 0,1 2 x

  11. For excited states: Box Potential in 1D Matched asymptotic approximation for excited states μ μ μ MA MA MA + + [( 1)/2] [ /2] j j 2 2 1 ∑ l ∑ l φ ε ≈ φ = μ − + − − g g g MA MA ( ) ( ) [ tanh( ( )) tanh( ( )) tanh( )] x x x x C ε + ε + ε j j j j 1 1 j j = = 0 0 l l – Approximate chemical potential & energy μ ε ≈ μ = + + ε + + ε + + ε MA 2 2 2 2 1 2( 1) 1 ( 1) 2( 1) , j j j j j 1 4 ( ε ≈ = + + ε + + ε + + ε MA 2 2 2 2 1) 1 ( 1) 2( 1) , E E j j j j j 2 3 O ε ( ) – Boundary & interior layers ε → 0 Semiclassical limits ± ≠ + ⎧ 1 /( 1) x l j 1 φ ε → φ = ε → μ ε → 0 ⎨ ( ) 1 x E = + j j j j ⎩ 0 /( 1) 2 x l j ε ε ε ε ε ε ε ε < < < < < ⇒ μ < μ < μ < < μ < L L L L E E E E 1 2 1 2 g j g j

  12. Extension & numerical computation Extension – High dimension – Nonzero external potential Numerical method & results – Normalized gradient flow – Backward Euler finite difference method

  13. For dynamics: Formal limits WKB analysis ε 2 r r ε ∂ ψ ε = − ∇ ψ ε + ψ ε + β ψ ε ψ ε 2 2 ( , ) ( ) | | i x t V x t 2 r r r r ε ψ ε = ψ ε = ρ ε ε ( )/ iS x ( ,0) : ( ) ( ) x x x e 0 0 0 – Formally assume r r r / , ε ψ ε = ρ ε ε ε = ∇ ε ε = ρ ε ε iS , e v S J v – Geometrical Optics: Transport + Hamilton-Jacobi ∂ ρ ε + ∇• ρ ε ∇ ε = ( ) 0, S t ε 2 r 1 1 2 ε ε ε ε ∂ + ∇ + + β ρ = Δ ρ ( ) S S V x t d ρ ε 2 2

  14. For dynamics: Formal limits – Quantum Hydrodynamics (QHD): Euler +3 rd dispersion r ε ε ε ∂ ρ + ∇• ρ = ρ = β ρ 2 ( ) 0 ( ) / 2 v P t r r ε ε r ⊗ ε 2 J J ∂ ε + ∇• + ∇ ρ ε + ρ ε ∇ = ∇ ρ ε Δ ρ ε ( ) ( ) ( ) ( ln ) J P V ε ρ t 4 – Formal Limits r ∂ ρ + ∇• ρ = ρ = β ρ 0 0 0 2 ( ) 0 ( ) / 2 v P t r r r ⊗ 0 0 J J ∂ + ∇• + ∇ ρ + ρ ∇ = 0 0 0 ( ) ( ) ( ) 0 J P V ρ t 0 Mathematical justification: G. B. Whitman, E. Madelung, E. Wigner, P.L. Lious, P. A. Markowich, F.-H. Lin, P. Degond, C. D. Levermore, D. W. McLaughlin, E. Grenier, F. Poupaud, C. Ringhofer, N. J. Mauser, P. Gerand, R. Carles, P. Zhang, P. Marcati, J. Jungel, C. Gardner, S. Kerranni, H.L. Li, C.-K. Lin, C. Sparber, ….. – Linear case – NLS before caustics

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend