an introduction to numerical continuation methods with
play

An Introduction to Numerical Continuation Methods with Applications - PowerPoint PPT Presentation

An Introduction to Numerical Continuation Methods with Applications Eusebius Doedel IIMAS-UNAM July 28 - August 1, 2014 Persistence of Solutions Newtons method for solving a nonlinear equation [B83] 1 G ( ) , u R n , G ( u ) = 0 ,


  1. EXAMPLE : A Predator-Prey Model . ( Course demo : Predator-Prey/ODE/2D )  − 5 u 1 ) , u ′ 1 = 3 u 1 (1 − u 1 ) − u 1 u 2 − λ (1 − e  u ′ 2 = − u 2 + 3 u 1 u 2 .  Here u 1 may be thought of as “fish ” and u 2 as “sharks ”, while the term − 5 u 1 ) , λ (1 − e represents “fishing”, with “fishing-quota ” λ . When λ = 0 the stationary solutions are  3 u 1 (1 − u 1 ) − u 1 u 2 = 0 ⇒ ( u 1 , u 2 ) = (0 , 0) , (1 , 0) , (1  3 , 2) . − u 2 + 3 u 1 u 2 = 0  29

  2. The Jacobian matrix is − 5 u 1 � � 3 − 6 u 1 − u 2 − 5 λe − u 1 G u ( u 1 , u 2 ; λ ) = 3 u 2 − 1 + 3 u 1 so that � 3 � 0 G u (0 , 0 ; 0) = ; real eigenvalues 3 , -1 (unstable) 0 − 1 � − 3 � − 1 G u (1 , 0 ; 0) = ; real eigenvalues -3 , 2 (unstable) 0 2 � − 1 √ − 1 � G u (1 complex eigenvalues − 1 2 ± 1 3 3 , 2 ; 0) = ; 7 i (stable) 6 0 2 All three Jacobians at λ = 0 are nonsingular . Thus, by the IFT, all three stationary points persist for (small) λ � = 0 . 30

  3. In this problem we can explicitly find all solutions: Family 1 : ( u 1 , u 2 ) = (0 , 0) Family 2 : λ = 3 u 1 (1 − u 1 ) u 2 = 0 , 1 − e − 5 u 1 3(1 − 2 u 1 ) = 3 ( Note that u 1 → 0 λ = lim lim 5 ) u 1 → 0 5 e − 5 u 1 Family 3 : u 1 = 1 2 3 − 1 3 u 2 − λ (1 − e − 5 / 3 ) = 0 ⇒ u 2 = 2 − 3 λ (1 − e − 5 / 3 ) 3 , These solution families intersect at two bifurcation points , one of which is ( u 1 , u 2 , λ ) = (0 , 0 , 3 / 5) . 31

  4. 0 . 75 fish 0 . 50 0 . 25 0 . 00 1 . 5 sharks 1 . 0 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 0 . 5 quota 0 . 0 Stationary solution families of the predator-prey model. Solid/dashed curves denote stable/unstable solutions. Note the bifurcations and Hopf bifurcation (red square). 32

  5. 0 . 8 0 . 6 fish 0 . 4 0 . 2 0 . 0 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 quota Stationary solution families, showing fish versus quota. Solid/dashed curves denote stable/unstable solutions. 33

  6. Stability of Family 1 : � 3 − 5 λ � 0 G u (0 , 0 ; λ ) = ; eigenvalues 3 − 5 λ, − 1 . 0 − 1 Hence the zero solution is : unstable if λ < 3 / 5 , and stable if λ > 3 / 5 . Stability of Family 2 : This family has no stable positive solutions. 34

  7. • Stability of Family 3 : At λ H ≈ 0 . 67 the complex eigenvalues cross the imaginary axis: − This crossing is a Hopf bifurcation , − Beyond λ H there are stable periodic solutions . − Their period T increases as λ increases. − The period becomes infinite at λ = λ ∞ ≈ 0 . 70 . − This final orbit is a heteroclinic cycle . 35

  8. 1 . 00 0 . 75 min fish, max fish 0 . 50 0 . 25 0 . 00 − 0 . 25 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 quota Stationary (blue) and periodic (red) solution families of the predator-prey model. ( For the periodic solution family both the maximum and minimum are shown. ) 36

  9. Periodic solutions of the predator-prey model. The largest orbits are close to a heteroclinic cycle. 37

  10. The bifurcation diagram shows the solution behavior for (slowly) increasing λ : • Family 3 is followed until λ H ≈ 0 . 67 . • Periodic solutions of increasing period until λ = λ ∞ ≈ 0 . 70 . • Collapse to trivial solution (Family 1). 38

  11. Continuation of Solutions Parameter Continuation Suppose we have a solution ( u 0 , λ 0 ) of G ( u , λ ) = 0 , as well as the derivative u 0 . ˙ Here u ≡ d u ˙ dλ . We want to compute the solution u 1 at λ 1 ≡ λ 0 + ∆ λ . 39

  12. "u" u 1 du u (= d λ at λ 0 ) � � ���� ���� u � ���� ���� 0 (0) u 1 ���� ���� � ∆λ ����������������� ����������������� λ λ λ 0 1 Graphical interpretation of parameter-continuation. 40

  13. To solve the equation G ( u 1 , λ 1 ) = 0 , for u 1 (with λ = λ 1 fixed) we use Newton’s method G u ( u ( ν ) 1 , λ 1 ) ∆ u ( ν ) − G ( u ( ν ) = 1 , λ 1 ) , 1 ν = 0 , 1 , 2 , · · · . u ( ν +1) = u ( ν ) + ∆ u ( ν ) . 1 1 1 As initial approximation use u (0) = u 0 + ∆ λ ˙ u 0 . 1 If G u ( u 1 , λ 1 ) is nonsingular , and ∆ λ sufficiently small then this iteration will converge [B55]. 41

  14. After convergence, the new derivative u 1 is computed by solving ˙ G u ( u 1 , λ 1 ) ˙ u 1 = − G λ ( u 1 , λ 1 ) . This equation is obtained by differentiating G ( u ( λ ) , λ ) = 0 , with respect to λ at λ = λ 1 . Repeat the procedure to find u 2 , u 3 , · · · . NOTE : • ˙ u 1 can be computed without another LU -factorization of G u ( u 1 , λ 1 ) . • Thus the extra work to compute u 1 ˙ is negligible . 42

  15. EXAMPLE : The Gelfand-Bratu Problem . u ′′ ( x ) + λ e u ( x ) = 0 for x ∈ [0 , 1] , u (0) = 0 , u (1) = 0 . We know that if λ = 0 then u ( x ) ≡ 0 is an isolated solution . Discretize by introducing a mesh , 0 = x 0 < x 1 < · · · < x N = 1 , x j − x j − 1 = h , (1 ≤ j ≤ N ) , h = 1 /N . The discrete equations are : u j +1 − 2 u j + u j − 1 + λ e u j = 0 , j = 1 , · · · , N − 1 , h 2 with u 0 = u N = 0 . 43

  16. Let   u 1 u 2   u ≡  .   ·  u N − 1 Then we can write the discrete equations as G ( u , λ ) = 0 , where G : R N − 1 × R → R N − 1 . 44

  17. Parameter-continuation : Suppose we have λ 0 , u 0 , and u 0 . ˙ Set λ 1 = λ 0 + ∆ λ . Newton’s method : G u ( u ( ν ) 1 , λ 1 ) ∆ u ( ν ) − G ( u ( ν ) = 1 , λ 1 ) , 1 u ( ν +1) = u ( ν ) + ∆ u ( ν ) , 1 1 1 for ν = 0 , 1 , 2 , · · · , with u (0) = u 0 + ∆ λ ˙ u 0 . 1 After convergence compute u 1 ˙ from G u ( u 1 , λ 1 ) ˙ u 1 = − G λ ( u 1 , λ 1 ) . Repeat the procedure to find u 2 , u 3 , · · · . 45

  18. Here  − 2 h 2 + λe u 1 1  h 2 1 − 2 1 h 2 + λe u 2   h 2 h 2   G u ( u , λ ) = . . . .     . . .   1 − 2 h 2 + λe u N − 1 h 2 Thus we must solve a tridiagonal system for each Newton iteration. NOTE : • The solution family has a fold where parameter-continuation fails ! • A better continuation method is “pseudo-arclength continuation ”. • There are also better discretizations, namely collocation , as used in AUTO . 46

  19. Pseudo-Arclength Continuation This method allows continuation of a solution family past a fold . It was introduced by H. B. Keller (1925-2008) in 1977. Suppose we have a solution ( u 0 , λ 0 ) of G ( u , λ ) = 0 , u 0 , ˙ as well as the normalized direction vector ( ˙ λ 0 ) of the solution family. Pseudo-arclength continuation consists of solving these equations for ( u 1 , λ 1 ) : G ( u 1 , λ 1 ) = 0 , u 0 � + ( λ 1 − λ 0 ) ˙ � u 1 − u 0 , ˙ λ 0 − ∆ s = 0 . 47

  20. "u" u 1 � � �� �� u 0 �� �� � � � , λ 0 ) ( �� �� u 0 u 0 � � ∆ s � � λ 0 � λ λ λ 0 1 Graphical interpretation of pseudo-arclength continuation. 48

  21. Solve the equations G ( u 1 , λ 1 ) = 0 , u 0 � + ( λ 1 − λ 0 ) ˙ � u 1 − u 0 , ˙ λ 0 − ∆ s = 0 . for ( u 1 , λ 1 ) by Newton’s method : G ( u ( ν ) 1 , λ ( ν )  ( G 1 u ) ( ν ) ( G 1 λ ) ( ν )    1 ) ∆ u ( ν ) � �  . 1 = −   ∆ λ ( ν )  ˙ � u ( ν ) u 0 � + ( λ ( ν ) − λ 0 )˙ u ∗ ˙ λ 0 1 − u 0 , ˙ λ 0 − ∆ s 0 1 1 Compute the next direction vector by solving � ˙ G 1 G 1     0 u λ � u 1  , = ˙    λ 1 ˙ u ∗ ˙ λ 0 1 0 and normalize it. 49

  22. NOTE : u 1 , ˙ • We can compute ( ˙ λ 1 ) with only one extra backsubstitution . • The orientation of the family is preserved if ∆ s is sufficiently small. + ˙ u 1 � 2 λ 2 • Rescale the direction vector so that indeed � ˙ 1 = 1 . 50

  23. FACT : The Jacobian is nonsingular at a regular solution. � � u ∈ R n +1 . PROOF : Let x ≡ λ Then pseudo-arclength continuation can be simply written as G ( x 1 ) = 0 , � x 1 − x 0 , ˙ x 0 � − ∆ s = 0 , ( � ˙ x 0 � = 1 ) . x 1 � �� �� x 0 x 0 ∆ s � Pseudo-arclength continuation. 51

  24. The pseudo-arclength equations are G ( x 1 ) = 0 , � x 1 − x 0 , ˙ x 0 � − ∆ s = 0 , ( � ˙ x 0 � = 1 ) . The Jacobian matrix in Newton’s method at ∆ s = 0 is � G 0 � x . x ∗ ˙ 0 N ( G 0 At a regular solution x ) = Span { ˙ x 0 } . � G 0 � x We must show that is nonsingular at a regular solution. x ∗ ˙ 0 52

  25. G 0 � � x If on the contrary is singular then for some vector z � = 0 we have : x ∗ ˙ 0 G 0 x z = 0 , � ˙ x 0 , z � = 0 , Since by assumption N ( G 0 x ) = Span { ˙ x 0 } , we have z = c ˙ x 0 , for some constant c . But then x 0 � 2 � ˙ x 0 , z � c � ˙ x 0 , ˙ x 0 � c � ˙ 0 = = = = c , so that z = 0 , which is a contradiction . QED ! 53

  26. EXAMPLE : The Gelfand-Bratu Problem . Use pseudo-arclength continuation for the discretized Gelfand-Bratu problem. Then the matrix � � � � G x G u G λ = , ˙ x ∗ u ∗ ˙ ˙ λ in Newton’s method is a bordered tridiagonal matrix :   ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆     ⋆ ⋆ ⋆ ⋆     ⋆ ⋆ ⋆ ⋆     ⋆ ⋆ ⋆ ⋆ .     ⋆ ⋆ ⋆ ⋆     ⋆ ⋆ ⋆ ⋆     ⋆ ⋆ ⋆   ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ which can be decomposed very efficiently . 54

  27. Following Folds and Hopf Bifurcations • At a fold the the behavior of a system can change drastically. • How does the fold location change when a second parameter varies ? • Thus we want the compute a locus of folds in 2 parameters. • We also want to compute loci of Hopf bifurcations in 2 parameters. 55

  28. Following Folds Treat both parameters λ and µ as unknowns , and compute a solution family X ( s ) ≡ ( u ( s ) , φ ( s ) , λ ( s ) , µ ( s ) ) , to  G ( u , λ, µ ) = 0 ,      F ( X ) ≡ G u ( u, λ, µ ) φ = 0 ,     � φ , φ 0 � − 1 = 0 ,  and the added continuation equation u 0 � + � φ − φ 0 , ˙ φ 0 � + ( λ − λ 0 )˙ � u − u 0 , ˙ λ 0 + ( µ − µ 0 ) ˙ µ 0 − ∆ s = 0 . As before, u 0 , ˙ φ 0 , ˙ ( ˙ λ 0 , ˙ µ 0 ) , is the direction of the family at the current solution point ( u 0 , φ 0 , λ 0 , µ 0 ) . 56

  29. EXAMPLE : The A → B → C Reaction . ( Course demo : Chemical-Reactions/ABC-Reaction/Folds-SS ) The equations are − u 1 + D (1 − u 1 ) e u 3 , u ′ = 1 − u 2 + D (1 − u 1 ) e u 3 − Dσu 2 e u 3 , u ′ = 2 − u 3 − βu 3 + DB (1 − u 1 ) e u 3 + DBασu 2 e u 3 , u ′ = 3 where 1 − u 1 is the concentration of A , u 2 is the concentration of B , u 3 is the temperature , α = 1 , σ = 0 . 04 , B = 8 , D is the Damkohler number , β is the heat transfer coefficient . 57

  30. A stationary solution family for β = 1 . 20. Note the two folds and the Hopf bifurcation . 58

  31. 1 . 4 1 . 2 1 . 40 1 . 0 1 . 35 0 . 8 β β 0 . 6 1 . 30 0 . 4 1 . 25 0 . 2 0 . 0 1 . 20 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 14 0 . 15 0 . 16 0 . 17 0 . 18 0 . 19 0 . 20 D D A locus of folds (with blow-up) for the A → B → C reaction. Notice the two cusp singularities along the 2-parameter locus. ( There is a swallowtail singularity in nearby 3-parameter space. ) 59

  32. 7 6 5 || u || 4 3 2 1 0 . 12 0 . 14 0 . 16 0 . 18 0 . 20 0 . 22 D Stationary solution families for β = 1 . 20 , 1 . 21 , · · · , 1 . 42. ( Open diamonds mark folds, solid red squares mark Hopf points. ) 60

  33. Following Hopf Bifurcations The extended system is  f ( u , λ, µ ) = 0 ,      F ( u , φ , β, λ ; µ ) ≡ f u ( u , λ, µ ) φ − i β φ = 0 ,     � φ , φ 0 � − 1 = 0 ,  where R n × C n × R 2 × R R n × C n × C , F : → and to which we want to compute a solution family ( u , φ , β , λ , µ ) , with u ∈ R n , φ ∈ C n , β, λ, µ ∈ R . Above φ 0 belongs to a “reference solution ” ( u 0 , φ 0 , β 0 , λ 0 , µ 0 ) , which normally is the latest computed solution along a family. 61

  34. EXAMPLE : The A → B → C Reaction . ( Course demo : Chemical-Reactions/ABC-Reaction/Hopf ) The stationary family with Hopf bifurcation for β = 1 . 20 . 62

  35. 2 . 0 1 . 5 β 1 . 0 0 . 5 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 D The locus of Hopf bifurcations for the A → B → C reaction. 63

  36. 7 6 5 4 || u || 3 2 1 0 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 D Stationary solution families for β = 1 . 20 , 1 . 20 , 1 . 25 , 1 . 30 , · · · , 2 . 30, with Hopf bifurcations (the red squares) . 64

  37. Boundary Value Problems Consider the first order system of ordinary differential equations u ′ ( t ) − f ( u ( t ) , µ , λ ) = 0 , t ∈ [0 , 1] , where u ( · ) , f ( · ) ∈ R n , µ ∈ R n µ , λ ∈ R , subject to boundary conditions b ( · ) ∈ R n b , b ( u (0) , u (1) , µ , λ ) = 0 , and integral constraints � 1 q ( · ) ∈ R n q . q ( u ( s ) , µ , λ ) ds = 0 , 0 65

  38. This boundary value problem (BVP) is of the form F ( X ) = 0 , where X = ( u , µ , λ ) , to which we add the continuation equation � X − X 0 , ˙ X 0 � − ∆ s = 0 , where X 0 represents the latest solution computed along the family. In detail , the continuation equation is � 1 � u ( t ) − u 0 ( t ) , ˙ u 0 ( t ) � dt � µ − µ 0 , ˙ µ 0 � + 0 ( λ − λ 0 )˙ + λ 0 − ∆ s = 0 . 66

  39. NOTE : • In the context of continuation we solve this BVP for ( u ( · ) , λ , µ ) . • In order for problem to be formally well-posed we must have n µ = n b + n q − n ≥ 0 . • A simple case is n q = 0 , n b = n , for which n µ = 0 . 67

  40. Discretization: Orthogonal Collocation Introduce a mesh { 0 = t 0 < t 1 < · · · < t N = 1 } , where h j ≡ t j − t j − 1 , (1 ≤ j ≤ N ) , Define the space of (vector) piecewise polynomials P m as h � [ t j − 1 ,t j ] ∈ P m } , P m ≡ { p h ∈ C [0 , 1] : p h � h � where P m is the space of (vector) polynomials of degree ≤ m . 68

  41. The collocation method consists of finding µ ∈ R n µ , p h ∈ P m h , such that the following collocation equations are satisfied : p ′ h ( z j,i ) = f ( p h ( z j,i ) , µ, λ ) , j = 1 , · · · , N , i = 1 , · · · , m , and such that p h satisfies the boundary and integral conditions . The collocation points z j,i in each subinterval [ t j − 1 , t j ] , are the (scaled) roots of the m th-degree orthogonal polynomial (Gauss points 3 ). 3 See Pages 261 , 287 of the Background Notes on Elementary Numerical Methods. 69

  42. 0 1 t t t t 0 1 2 N t t j-1 j � � � z j,1 z j,2 z j,3 t j-1 t j t t j-2/3 j-1/3 (t) (t) l l j,3 j,1 The mesh { 0 = t 0 < t 1 < · · · < t N = 1 } , with collocation points and extended-mesh points shown for m = 3 . Also shown are two of the four local Lagrange basis polynomials . 70

  43. Since each local polynomial is determined by ( m + 1) n , coefficients, the total number of unknowns (considering λ as fixed) is ( m + 1) n N + n µ . This is matched by the total number of equations : collocation : m n N , ( N − 1) n , continuity : constraints : n b + n q ( = n + n µ ) . 71

  44. Assume that the solution u ( t ) of the BVP is sufficiently smooth. Then the order of accuracy of the orthogonal collocation method is m , i.e. , = O ( h m ) . � p h − u � ∞ At the main meshpoints t j we have superconvergence : = O ( h 2 m ) . max j | p h ( t j ) − u ( t j ) | The scalar variables λ and µ are also superconvergent . 72

  45. Implementation For each subinterval [ t j − 1 , t j ] , introduce the Lagrange basis polynomials { ℓ j,i ( t ) } , j = 1 , · · · , N , i = 0 , 1 , · · · , m , defined by m t − t j − k � ℓ j,i ( t ) = m , m − t j − k t j − i k =0 ,k � = i m where i t j − i m ≡ t j − m h j . The local polynomials can then be written m � p j ( t ) = ℓ j,i ( t ) u j − i m . i =0 With the above choice of basis u j ∼ u ( t j ) and u j − i m ∼ u ( t j − i m ) , where u ( t ) is the solution of the continuous problem. 73

  46. The collocation equations are ′ p j ( z j,i ) = f ( p j ( z j,i ) , µ , λ ) , i = 1 , · · · , m, j = 1 , · · · , N . The boundary conditions are b i ( u 0 , u N , µ , λ ) = 0 , i = 1 , · · · , n b . The integral constraints can be discretized as N m � � ω j,i q k ( u j − i m , µ , λ ) = 0 , k = 1 , · · · , n q , j =1 i =0 where the ω j,i are the Lagrange quadrature weights . 74

  47. The continuation equation is � 1 µ 0 � + ( λ − λ 0 ) ˙ � u ( t ) − u 0 ( t ) , ˙ u 0 ( t ) � dt + � µ − µ 0 , ˙ λ 0 − ∆ s = 0 , 0 where ( u 0 , µ 0 , λ 0 ) , is the previous solution along the solution family, and µ 0 , ˙ ( ˙ u 0 , ˙ λ 0 ) , is the normalized direction of the family at the previous solution . The discretized continuation equation is of the form N m � � ω j,i � u j − i m − ( u 0 ) j − i ( ˙ m � m , u 0 ) j − i j =1 i =0 µ 0 � + ( λ − λ 0 ) ˙ + � µ − µ 0 , ˙ λ 0 − ∆ s = 0 . 75

  48. Numerical Linear Algebra The complete discretization consists of m n N + n b + n q + 1 , nonlinear equations , with unknowns m } ∈ R mnN + n , µ ∈ R n µ , { u j − i λ ∈ R . These equations are solved by a Newton-Chord iteration . 76

  49. We illustrate the numerical linear algebra for the case n = 2 ODEs , N = 4 mesh intervals , m = 3 collocation points , n b = 2 boundary conditions , n q = 1 integral constraint , and the continuation equation. • The operations are also done on the right hand side , which is not shown. • Entries marked “ ◦ ” have been eliminated by Gauss elimination. • Entries marked “ · ” denote fill-in due to pivoting . • Most of the operations can be done in parallel . 77

  50. u 1 µ λ u 0 u 2 u 1 u 2 u 3 u N 3 3 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • The structure of the Jacobian . 78

  51. u 1 µ λ u 0 u 2 u 1 u 2 u 3 u N 3 3 • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ • • • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ • • • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ • • • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ • • • • • • • • • • • • • • • • • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • • The system after condensation of parameters, which can be done in parallel . 79

  52. u 1 µ λ u 0 u 2 u 1 u 2 u 3 u N 3 3 • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ • • • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ • • • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ • • • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ • • • • • • • • • • • • • • • • • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • • • • The preceding matrix, showing the decoupled • subsystem . 80

  53. u 1 µ λ u 0 u 2 u 1 u 2 u 3 u N 3 3 • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • · · • • • • ◦ ◦ ◦ ◦ ◦ • · · • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • · · • • • • ◦ ◦ ◦ ◦ ◦ • · · • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • • • • • • • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • Stage 1 of the nested dissection to solve the decoupled • subsystem. 81

  54. u 1 µ λ u 0 u 2 u 1 u 2 u 3 u N 3 3 • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • · · • • • • ◦ ◦ ◦ ◦ ◦ • · · • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ • • · · • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • · · • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • · · • • • • ◦ ◦ ◦ ◦ ◦ • · · • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • • • • • • • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • Stage 2 of the nested dissection to solve the decoupled • subsystem. 82

  55. u 1 µ λ u 0 u 2 u 1 u 2 u 3 u N 3 3 • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • · · • • • • ◦ ◦ ◦ ◦ ◦ • · · • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ • • · · • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • · · • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • · · • • • • ◦ ◦ ◦ ◦ ◦ • · · • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • • • • • • • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • The preceding matrix showing the final decoupled • subsystem . 83

  56. u 1 µ λ u 0 u 2 u 1 u 2 u 3 u N 3 3 • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • · · • • • • ◦ ◦ ◦ ◦ ◦ • · · • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ • • · · • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • · · • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • • • ◦ ◦ ◦ ◦ • • · · • • • • ◦ ◦ ◦ ◦ ◦ • · · • • • • • • • • • • • • • • ◦ • • • • • • • • • ◦ ◦ • • • • • • • • ◦ ◦ ◦ • • • • • A A B B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • A A ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B B • • • • • • • • • • • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • The approximate Floquet multipliers are the eigenvalues of M ≡ − B − 1 A . 84

  57. Accuracy Test The Table shows the location of the fold in the Gelfand-Bratu problem, for 4 Gauss collocation points per mesh interval, and N mesh intervals . N Fold location 2 3.5137897550 4 3.5138308601 8 3.5138307211 16 3.5138307191 32 3.5138307191 85

  58. Periodic Solutions • Periodic solutions can be computed efficiently using a BVP approach. • This method also determines the period very accurately. • Moreover, the technique can compute unstable periodic orbits. 86

  59. Consider u ( · ) , f ( · ) ∈ R n , u ′ ( t ) = f ( u ( t ) , λ ) , λ ∈ R . Fix the interval of periodicity by the transformation t t → T . Then the equation becomes u ( · ) , f ( · ) ∈ R n , u ′ ( t ) = T f ( u ( t ) , λ ) , T , λ ∈ R . and we seek solutions of period 1 , i.e. , u (0) = u (1) . Note that the period T is one of the unknowns . 87

  60. The above equations do not uniquely specify u and T : Assume that we have computed ( u k − 1 ( · ) , T k − 1 , λ k − 1 ) , and we want to compute the next solution ( u k ( · ) , T k , λ k ) . Then u k ( t ) can be translated freely in time : If u k ( t ) is a periodic solution, then so is u k ( t + σ ) , for any σ . Thus, a phase condition is needed. 88

  61. An example is the Poincar´ e phase condition ′ � u k (0) − u k − 1 (0) , u k − 1 (0) � = 0 . ( But we will derive a numerically more suitable integral phase condition . ) u k-1 (0) u k-1 (0) � � u (0) k Graphical interpretation of the Poincar´ e phase condition. 89

  62. An Integral Phase Condition If ˜ u k ( t ) is a solution then so is u k ( t + σ ) , ˜ for any σ . We want the solution that minimizes � 1 u k ( t + σ ) − u k − 1 ( t ) � 2 D ( σ ) ≡ � ˜ 2 dt . 0 The optimal solution u k ( t + ˆ ˜ σ ) , must satisfy the necessary condition D ′ (ˆ σ ) = 0 . 90

  63. Differentiation gives the necessary condition � 1 u ′ � ˜ u k ( t + ˆ σ ) − u k − 1 ( t ) , ˜ k ( t + ˆ σ � dt = 0 . 0 Writing u k ( t ) ≡ ˜ u k ( t + ˆ σ ) , gives � 1 � u k ( t ) − u k − 1 ( t ) , u ′ k ( t ) � dt = 0 . 0 Integration by parts, using periodicity, gives � 1 ′ 0 � u k ( t ) , u k − 1 ( t ) � dt = 0 . This is the integral phase condition. 91

  64. Continuation of Periodic Solutions • Pseudo-arclength continuation is used to follow periodic solutions . • It allows computation past folds along a family of periodic solutions. • It also allows calculation of a “vertical family ” of periodic solutions. For periodic solutions the continuation equation is � 1 u k − 1 ( t ) � dt + ( T k − T k − 1 ) ˙ T k − 1 + ( λ k − λ k − 1 )˙ � u k ( t ) − u k − 1 ( t ) , ˙ λ k − 1 = ∆ s . 0 92

  65. SUMMARY : We have the following equations for periodic solutions : u ′ k ( t ) = T f ( u k ( t ) , λ k ) , u k (0) = u k (1) , � 1 ′ � u k ( t ) , u k − 1 ( t ) � dt = 0 , 0 with continuation equation � 1 u k − 1 ( t ) � dt + ( T k − T k − 1 ) ˙ T k − 1 + ( λ k − λ k − 1 )˙ � u k ( t ) − u k − 1 ( t ) , ˙ λ k − 1 = ∆ s , 0 where u ( · ) , f ( · ) ∈ R n , λ , T ∈ R . 93

  66. Stability of Periodic Solutions In our continuation context, a periodic solution of period T satisfies u ′ ( t ) = T f ( u ( t )) , for t ∈ [0 , 1] , u (0) = u (1) , (for given value of the continuation parameter λ ). A small perturbation in the initial condition u (0) + ǫ v (0) , ǫ small , leads to the linearized equation v ′ ( t ) = T f u ( u ( t ) ) v ( t ) , for t ∈ [0 , 1] , which induces a linear map v (0) → v (1) , represented by v (1) = M v (0) . 94

  67. v (1) = M v (0) The eigenvalues of M are the Floquet multipliers that determine stability. M always has a multiplier µ = 1 , since differentiating u ′ ( t ) = T f ( u ( t )) , gives v ′ ( t ) = T f u ( u ( t ) ) v ( t ) , where v ( t ) = u ′ ( t ) , with v (0) = v (1) . 95

  68. v (1) = M v (0) • If M has a Floquet multiplier µ with | µ | > 1 then u ( t ) is unstable . • If all multipliers (other than µ = 1) satisfy | µ | < 1 then u ( t ) is stable . • At folds and branch points there are two multipliers µ = 1 . • At a period-doubling bifurcation there is a real multiplier µ = − 1 . • At a torus bifurcation there is a complex pair on the unit circle. 96

  69. EXAMPLE : The Lorenz Equations . ( Course demo : Lorenz ) These equations were introduced in 1963 by Edward Lorenz (1917-2008) as a simple model of atmospheric convection : x ′ = σ ( y − x ) , y ′ = ρ x − y − x z , z ′ = x y − β z , where (often) σ = 10 , β = 8 / 3 , ρ = 28 . 97

  70. Course demo : Lorenz/Basic Bifurcation diagram of the Lorenz equations for σ = 10 and β = 8 / 3 . 98

  71. Course demo : Lorenz/Basic Unstable periodic orbits of the Lorenz equations. 99

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend