continuation from a flat to a round earth model in the
play

Continuation from a flat to a round Earth model in the coplanar - PowerPoint PPT Presentation

Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Continuation from a flat to a round Earth model in the coplanar orbit transfer problem M. Cerf 1 , T. Haberkorn, Emmanuel Tr elat 1 1 EADS Astrium, les


  1. Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Continuation from a flat to a round Earth model in the coplanar orbit transfer problem M. Cerf 1 , T. Haberkorn, Emmanuel Tr´ elat 1 1 EADS Astrium, les Mureaux 2 MAPMO, Universit´ e d’Orl´ eans Congr` es SMAI 2011 23-27 Mai M. Cerf, T. Haberkorn, E. Tr´ elat Continuation from a flat to a round Earth model

  2. Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations The coplanar orbit transfer problem Spherical Earth Central gravitational field g ( r ) = µ r 2 System in cylindrical coordinates ˙ r ( t ) = v ( t ) sin γ ( t ) ϕ ( t ) = v ( t ) ˙ r ( t ) cos γ ( t ) v ( t ) = − g ( r ( t )) sin γ ( t ) + T max ˙ m ( t ) u 1 ( t ) � v ( t ) r ( t ) − g ( r ( t )) � T max γ ( t ) = ˙ cos γ ( t ) + m ( t ) v ( t ) u 2 ( t ) v ( t ) ˙ m ( t ) = − β T max � u ( t ) � Thrust: T ( t ) = u ( t ) T max ( T max large: strong thrust) � u 1 ( t ) 2 + u 2 ( t ) 2 � 1 Control: u ( t ) = ( u 1 ( t ) , u 2 ( t )) satisfying � u ( t ) � = M. Cerf, T. Haberkorn, E. Tr´ elat Continuation from a flat to a round Earth model

  3. Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations The coplanar orbit transfer problem Initial conditions r ( 0 ) = r 0 , ϕ ( 0 ) = ϕ 0 , v ( 0 ) = v 0 , γ ( 0 ) = γ 0 , m ( 0 ) = m 0 , Final conditions a point of a specified orbit: r ( t f ) = r f , v ( t f ) = v f , γ ( t f ) = γ f , or an elliptic orbit of energy K f < 0 and eccentricity e f : ξ K f = v ( t f ) 2 µ − r ( t f ) − K f = 0 , 2 � 2 1 − r ( t f ) v ( t f ) 2 � ξ e f = sin 2 γ + cos 2 γ − e 2 f = 0 . µ (orientation of the final orbit not prescribed: ϕ ( t f ) free; in other words: argument of the final perigee free) Optimization criterion max m ( t f ) (note that t f has to be fixed) M. Cerf, T. Haberkorn, E. Tr´ elat Continuation from a flat to a round Earth model

  4. Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Application of the Pontryagin Maximum Principle Hamiltonian v � − g ( r ) sin γ + T max � H ( q , p , p 0 , u ) = p r v sin γ + p ϕ r cos γ + p v m u 1 �� v r − g ( r ) � cos γ + T max � + p γ mv u 2 − p m β T max � u � , v Extremal equations q ( t ) = ∂ H p ( t ) = − ∂ H ∂ p ( q ( t ) , p ( t ) , p 0 , u ( t )) , ∂ q ( q ( t ) , p ( t ) , p 0 , u ( t )) , ˙ ˙ Maximization condition H ( q ( t ) , p ( t ) , p 0 , u ( t )) = max � w � � 1 H ( q ( t ) , p ( t ) , p 0 , w ) M. Cerf, T. Haberkorn, E. Tr´ elat Continuation from a flat to a round Earth model

  5. Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Application of the Pontryagin Maximum Principle Hamiltonian v � − g ( r ) sin γ + T max � H ( q , p , p 0 , u ) = p r v sin γ + p ϕ r cos γ + p v m u 1 �� v r − g ( r ) � cos γ + T max � + p γ mv u 2 − p m β T max � u � , v Maximization condition leads to u ( t ) = ( u 1 ( t ) , u 2 ( t )) = ( 0 , 0 ) whenever Φ( t ) < 0 p v ( t ) p γ ( t ) u 1 ( t ) = , u 2 ( t ) = whenever Φ( t ) > 0 � � p v ( t ) 2 + p γ ( t ) 2 p v ( t ) 2 + p γ ( t ) 2 v ( t ) v ( t ) 2 v ( t ) 2 where � p v ( t ) 2 + p γ ( t ) 2 1 Φ( t ) = v ( t ) 2 − β p m ( t ) (switching function) m ( t ) M. Cerf, T. Haberkorn, E. Tr´ elat Continuation from a flat to a round Earth model

  6. Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Application of the Pontryagin Maximum Principle Hamiltonian v � − g ( r ) sin γ + T max � H ( q , p , p 0 , u ) = p r v sin γ + p ϕ r cos γ + p v m u 1 �� v r − g ( r ) � cos γ + T max � + p γ mv u 2 − p m β T max � u � , v Transversality conditions case of a fixed point of a specified orbit: p ϕ ( t f ) = 0 , p m ( t f ) = − p 0 case of an orbit of given energy and eccentricity: ∂ r ξ K f ( p γ ∂ v ξ e f − p v ∂ γ ξ e f ) + ∂ v ξ K f ( p r ∂ γ ξ e f − p γ ∂ r ξ e f ) = 0 Remark p 0 � = 0 (no abnormal) ⇒ p 0 = − 1 no singular arc (Bonnard - Caillau - Faubourg - Gergaud - Haberkorn - Noailles - Tr´ elat) M. Cerf, T. Haberkorn, E. Tr´ elat Continuation from a flat to a round Earth model

  7. Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Shooting method Given ( t f , p 0 ) , one can integrate the Hamiltonian flow from 0 to t f to have ( q ( t f ) , p ( t f )) . Find a zero of r ( t f , p 0 ) − r f ξ K f ( p 0 )     v ( t f , p 0 ) − v f ξ e f ( p 0 )     S ( t f , p 0 ) = γ ( t f , p 0 ) − γ f  or ∗ ∗ ∗  ,         p ϕ ( t f , p 0 ) p ϕ ( t f , p 0 )   p m ( t f , p 0 ) − 1 p m ( t f , p 0 ) − 1 A zero of S ( · , · ) is an admissible trajectory satisfying the necessary conditions. Main problem: how to make the shooting method converge? initialization of the shooting method discontinuities of the optimal control M. Cerf, T. Haberkorn, E. Tr´ elat Continuation from a flat to a round Earth model

  8. Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Shooting method Main problem: how to make the shooting method converge? initialization of the shooting method discontinuities of the optimal control Several methods: use first a direct method to provide a good initial guess, e.g. AMPL combined with IPOPT: R. Fourer, D.M. Gay, B.W. Kernighan, AMPL: A modeling language for mathematical programming , Duxbury Press, Brooks-Cole Publishing Company (1993). A. W¨ achter, L.T. Biegler On the implementation of an interior-point lter line- search algorithm for large-scale nonlinear programming , Mathematical Programming 106 (2006), 25–57. but usual flaws of direct methods (computationally demanding, lack of numerical precision). M. Cerf, T. Haberkorn, E. Tr´ elat Continuation from a flat to a round Earth model

  9. Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Shooting method Main problem: how to make the shooting method converge? initialization of the shooting method discontinuities of the optimal control Several methods: use the impulse transfer solution to provide a good initial guess: P . Augros, R. Delage, L. Perrot, Computation of optimal coplanar orbit transfers , AIAA 1999. but valid only for nearly circular initial and final orbits. See also: J. Gergaud, T. Haberkorn, Orbital transfer: some links between the low-thrust and the impulse cases , Acta Astronautica 60 , no. 6-9 (2007), 649–657. L.W. Neustadt, A general theory of minimum-fuel space trajectories , SIAM Journal on Control 3 , no. 2 (1965), 317–356. M. Cerf, T. Haberkorn, E. Tr´ elat Continuation from a flat to a round Earth model

  10. Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Shooting method Main problem: how to make the shooting method converge? initialization of the shooting method discontinuities of the optimal control Several methods: multiple shooting method parameterized by the number of thrust arcs: H. J. Oberle, K. Taubert, Existence and multiple solutions of the minimum-fuel orbit transfer problem , J. Optim. Theory Appl. 95 (1997), 243–262. M. Cerf, T. Haberkorn, E. Tr´ elat Continuation from a flat to a round Earth model

  11. Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Shooting method Main problem: how to make the shooting method converge? initialization of the shooting method discontinuities of the optimal control Several methods: differential or simplicial continuation method linking the minimization of the L 2 -norm of the control to the minimization of the fuel consumption: J. Gergaud, T. Haberkorn, P . Martinon, Low thrust minimum fuel orbital transfer: an homotopic approach , J. Guidance Cont. Dyn. 27 , 6 (2004), 1046–1060. P . Martinon, J. Gergaud, Using switching detection and variational equations for the shooting method , Optimal Cont. Appl. Methods 28 , no. 2 (2007), 95–116. but not adapted for high-thrust transfer. M. Cerf, T. Haberkorn, E. Tr´ elat Continuation from a flat to a round Earth model

  12. Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Flattening the Earth Observation: Solving the optimal control problem for a flat Earth model with constant gravity is simple and algorithmically very efficient. In view of that: Continuation from this simple model to the initial round Earth model. M. Cerf, T. Haberkorn, E. Tr´ elat Continuation from a flat to a round Earth model

  13. Introduction Flattening the Earth Continuation procedure Flat Earth Numerical simulations Simplified flat Earth model System x ( t ) = v x ( t ) ˙ ˙ h ( t ) = v h ( t ) v x ( t ) = T max max m ( t f ) ˙ m ( t ) u x ( t ) t f free v h ( t ) = T max ˙ m ( t ) u h ( t ) − g 0 � u x ( t ) 2 + u h ( t ) 2 ˙ m ( t ) = − β T max Control Control ( u x ( · ) , u h ( · )) such that u x ( · ) 2 + u h ( · ) 2 � 1 initial conditions: x ( 0 ) = x 0 , h ( 0 ) = h 0 , v x ( 0 ) = v x 0 , v h ( 0 ) = v h 0 , m ( 0 ) = m 0 final conditions: h ( t f ) = h f , v x ( t f ) = v xf , v h ( t f ) = 0 M. Cerf, T. Haberkorn, E. Tr´ elat Continuation from a flat to a round Earth model

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend