an effective search method for gravitational ringing of
play

An Effective Search Method for Gravitational Ringing of Black Holes - PowerPoint PPT Presentation

1 An Effective Search Method for Gravitational Ringing of Black Holes Hiroyuki Nakano (Osaka City) Hirotaka Takahashi (Osaka, Niigata and YITP[Kyoto]) Hideyuki Tagoshi (Osaka) Misao Sasaki (YITP[Kyoto]) [Phys. Rev. D 68 , 102003 (2003)] The


  1. 1 An Effective Search Method for Gravitational Ringing of Black Holes Hiroyuki Nakano (Osaka City) Hirotaka Takahashi (Osaka, Niigata and YITP[Kyoto]) Hideyuki Tagoshi (Osaka) Misao Sasaki (YITP[Kyoto]) [Phys. Rev. D 68 , 102003 (2003)] The 8th Gravitational Wave Data Analysis Workshop in Milwaukee, Wisconsin, USA (December 17th-20th, 2003)

  2. 2 § 1. Introduction Formation of black hole : Quasinormal oscillation (Ringdown) Observation of gravitational waves ( Direct observation of B.H.) Information of the mass and angular momentum of B.H. Search method: Using theoretical waveforms as templates Matched filtering method GOAL : Efficient method for tiling the template space Ringdown waveform: h ( f c , Q, t 0 , φ 0 ; t ) = e − π fc ( t − t 0) cos(2 π f c ( t − t 0 ) − φ 0 ) for t ≥ t 0 , Q f c : Central frequency, t 0 : Initial time Q : Quality factor, φ 0 : Initial phase

  3. 3 Relation between ringdown parameters ( f c , Q ) and (Mass, Spin) of Kerr B.H. The least damped mode of ringdown [Echeverria fitting formulas (’89)]: − 1  M   Q ≃ 2(1 − a ) − 9 / 20 . f c ≃ 32kHz [1 − 0 . 63(1 − a ) 3 / 10 ] ,     M ⊙  M : Mass of B.H. M ⊙ : Solar mass a : Non-dimensional spin parameter (0 ≤ a ≤ 1) < Strategy > * White noise case: Analytical treatment Fourier transformation (in the frequency domain) How do we tile the template points? (Templates are taken at the template points.) Introduce new parameters (Coordinate transformation) Efficient template spacing * Colored (detector’s) noise case: Check the efficiency.

  4. 4 § 2. Template space Ringdown waveform ( t ≥ t 0 ): h ( f c , Q, t 0 , φ 0 ; t ) = e − π fc ( t − t 0) cos(2 π f c ( t − t 0 ) − φ 0 ) . Q h ( f c , Q, t 0 , φ 0 ; t ) = h c ( f c , Q, t 0 ; t ) cos φ 0 + h s ( f c , Q, t 0 ; t ) sin φ 0 , h c ( f c , Q, t 0 ; t ) = e − π fc ( t − t 0) cos(2 π f c ( t − t 0 )) , Q h s ( f c , Q, t 0 ; t ) = e − π fc ( t − t 0) sin(2 π f c ( t − t 0 )) . Q Fourier transformation: � ∞ ˜ −∞ dt e 2 πift h c/s ( t ) . h c/s ( f ) = h ∗ ( f ) = ˜ ˜ Complex conjugation : h ( − f ) . Inner product (in the white noise case): � f max a ( f )˜ b ∗ ( f ) . ( a, b ) = − f max d f ˜ Normalized wave [ N c/s = (˜ h c/s , ˜ h c/s )]: 1 ˆ ˜ h c/s ( f c , Q, t 0 ; f ) = h c/s ( f c , Q, t 0 ; f ) . � N c/s ( f c , Q, t 0 )

  5. 5 Note! h c and h s are NOT orthogonal. 1 (ˆ h c ( f c , Q, t 0 ) , ˆ h s ( f c , Q, t 0 )) = 2 (2 Q 2 + 1) =: c ( f c , Q, t 0 ) . � Maximize for the initial phase φ 0 [Mohanty (’98)]: φ 0 ( x, ˆ Λ( x ) ≡ max h ) h c ( f c , Q, t 0 )) 2 + ( x, ˆ ( x, ˆ h s ( f c , Q, t 0 )) 2 � = − 2 c ( f c , Q, t 0 )( x, ˆ h c ( f c , Q, t 0 ))( x, ˆ � h s ( f c , Q, t 0 )) 1 − c ( f c , Q, t 0 ) 2 � � / . Match C ( d f c , dQ, dt 0 ) (3-dim. space): Correlation between ( f c , Q, t 0 ) and ( f c + d f c , Q + dQ, t 0 + dt 0 ) f c , dQ, dt 0 ) = Λ(ˆ C ( d h c ( f c + d f c , Q + dQ, t 0 + dt 0 )) ≤ 1 . Smaller the match C —— > Larger the distance between two signals

  6. 6 Distance function (define the “metric”) [Owen (’96)]: ds 2 (3) = 1 − C , (3) = g (3) ds 2 ij dx i dx j 2 Q 2 (4 Q 2 + 5) 2 Q 4 f 2 (4 Q 2 + 1) 2 (2 Q 2 + 1) dQ 2 = d c + (2 Q 2 + 1) f 2 c 2 Q 3 − f c (4 Q 2 + 1)(2 Q 2 + 1) d f c dQ + 4 π f c (1 + 4 Q 2 ) f max π f c dt 2 0 + 2 Q 2 + 1 dt 0 dQ . Q (2 Q 2 + 1) Maximize the match for dt 0 (orthogonal to t 0 axis): IJ − g (3) It 0 g (3) g (2) IJ = g (3) Jt 0 , g (3) t 0 t 0 (2) = g (2) ds 2 IJ dx I dx J 2 Q 2 (4 Q 2 + 5) 2 Q 4 f 2 (4 Q 2 + 1) 2 (2 Q 2 + 1) dQ 2 = d c + (2 Q 2 + 1) f 2 c 2 Q 3 − f c (4 Q 2 + 1)(2 Q 2 + 1) d f c dQ .

  7. 7 Diagonalization of the metric: Using Q ≥ 2, and Coordinate transformation. X = F + ln 2 + 1 Q 2 − 1 1 Q 4 + 1 1 1 1 1 Q 6 − Q 8 , 8 64 384 2048 Y = 1 Q + 1 1 Q 3 − 3 1 Q 5 + 1 1 Q 7 − 17 1 1 Q 9 . 2 24 160 128 4608 ( F = ln f c , Accuracy up to O (1 /Q 8 ) inclusive.) F = X − ln 2 − 1 2 Y 2 + 7 12 Y 4 − 67 45 Y 6 + 1769 360 Y 8 , Q = 1 Y + 1 1 6 Y − 37 90 Y 3 + 166 135 Y 5 − 5917 1350 Y 7 . 2 ds 2 = Ω( Y ) dX 2 + dY 2 � � 60 Y 2 − 85 54 Y 4 + 13069 Ω( Y ) = 1 Y 2 − 1 1 3 + 37 2700 Y 6 4

  8. 8 § 3. Tiling method Signal to noise ratio (SNR) loss: ds 2 max = 0 . 02. Search region: f c, min ≤ f c ≤ f c, max , Q min ≤ Q ≤ Q max . How do we place the template points (TPs)? 1. Put TPs along the first Y =constant line. Y 0 = Y ( Q min ), v max ( Y ) = X ( F max , Q ) ( X 0 , Y 0 ) = ( v max ( Y 0 ) , Y 0 ) First TP: √ √ ( p 1 , q 1 ) = ( X 0 − r 1 / 2 , Y 0 − r 1 / 2) Intersecting point of two circles lies on Y = Y 0 . (This Fig. shows a part of whole region.)

  9. 9 r 2 = ds 2 max / Ω( q ) √ Most effective tiling: d = r/ 2 2. Cover the second line. √ Y 1 = Y 0 − 2 r 1 ( X 1 , Y 1 ) = ( v max ( Y 1 ) , Y 1 ) √ √ ( p 2 , q 2 ) = ( X 1 − r 2 / 2 , Y 1 − r 2 / 2)

  10. 10 3. Repeat until tiling the whole template space. Ex.) 10 2 Hz ≤ f c ≤ 10 4 Hz , 2 ≤ Q ≤ 20(22 . 9) , ds 2 max = 0 . 02 118 M ⊙ ≥ M ≥ 1 . 18 M ⊙ , ( a = 0) 277 M ⊙ ≥ M ≥ 2 . 77 M ⊙ , ( a = 0 . 994) Number of templates: 1148

  11. 11 Original coordinates : The contours show ds 2 max = 0 . 02. How effective? Ratio of Sum of the circle areas S cir to Parameter space S par : η = S cir = 1 . 57 . S par cf.) η = 2 . 12 (N. Arnaud et al. (’03))

  12. 12 § 4. Varidity of tiling method TAMA Data Taking 7 fitting noise power spectrum (Fig. 3.4.1 in TAMA REPORT 2002) Valid between 60Hz and 40000Hz. 63 10 3  85   + 1   220  + 1  710   + 3 S n ( | f | ) =             f 2 f 9 f 20    2 6 + 1  f + 1  f     .       20 2000 5 5500 * Ignore the overall amplitude of S n . Using 2500 signals Maximize for t 0 and φ 0 . 100Hz ≤ f c ≤ 10 4 Hz , 2 ≤ Q ≤ 20

  13. 13 Horizontal axis: Match Vertical axis: Number of signals Mean: 99 . 3% * We can detect the most of the signals without losing of the SNR.

  14. 14 * Preparation of Searching Gravitational Ringing Orthonormal template waveforms ˜ h 2 = C ˜ h s − ( c/C )˜ h c h c ˜ ˜ √ h 1 = C , , C 2 S 2 − c 2 where h c ( f c , Q, t 0 )) = C 2 , (˜ h c ( f c , Q, t 0 ) , ˜ h s ( f c , Q, t 0 )) = S 2 , (˜ h s ( f c , Q, t 0 ) , ˜ (˜ h c ( f c , Q, t 0 ) , ˜ h s ( f c , Q, t 0 )) = c . Definition of inner product in the colored noise case: a ( f )˜ a ∗ ( f )˜ b ∗ ( f ) + ˜ f ˜ b ( f ) � f max ( a, b ) = 2 d , 0 S n ( | f | ) Signal to noise ratio: x is the real data. ( x, h 1 ) 2 + ( x, h 2 ) 2 . � ρ = ρ 2 = Mohanty’s Λ( x )

  15. 15 § 5. Conclusion and Discussion * Parameters of ringdown waves: ( t 0 , φ 0 , f c , Q ) 1. Maximize for ( t 0 , φ 0 ). 2. Parameter space of ( f c , Q ) in the white noise case. * Detector’s noise case Valid in the fitting TAMA noise spectrum. Check by using the real data. —– > Tsunesada (NAOJ) et al. < Future Works > * Search for the real data. Remove fake events. * Coincidence analysis by using many detectors.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend