algebraic footprints of quantum gravity a stability point
play

Algebraic Footprints of Quantum Gravity: a Stability Point of View - PowerPoint PPT Presentation

Algebraic Footprints of Quantum Gravity: a Stability Point of View Chryssomalis Chryssomalakos ICN - UNAM (based on joint work with Elias Okon (ICN - UNAM)) Reference: Int. J. Mod. Phys. D 13/10 (2004) 20032034 ( hep-th/0410212 ) Contents


  1. Algebraic Footprints of Quantum Gravity: a Stability Point of View Chryssomalis Chryssomalakos ICN - UNAM (based on joint work with Elias Okon (ICN - UNAM)) Reference: Int. J. Mod. Phys. D 13/10 (2004) 2003–2034 ( hep-th/0410212 )

  2. Contents 1. Motivation 2. Lie algebra deformations 3. Stable quantum relativistic kinematics 4. Physical implications (in progress) 5. To do list

  3. Motivation ◮ Non-commutative spacetime [ X µ , X ν ] = ? ◮ Modified dispersion relations E 2 = p 2 + m 2 + ? Preferred frames — Lorentz symmetry violation ◮ ◮ Invariant length scale � � G → ℓ P ≡ Quantum Gravity c 3 + Lorentz contraction ⇓ ?

  4. ◮ The stability criterion Galileo Einstein c c [ J a , J b ] = i ǫ ab J c [ J a , J b ] = i ǫ ab J c stabilize c c [ J a , K b ] = i ǫ ab K c − → [ J a , K b ] = i ǫ ab K c c [ K a , K b ] = 0 [ K a , K b ] = i t ǫ ab J c Newton Heisenberg stabilize [ f ( q, p ) , g ( q, p )] = 0 − → [ f ( q, p ) , g ( q, p )] = i � { f ( q, p ) , g ( q, p ) }

  5. Lie Algebra Deformations • Lie algebras Lie algebra ( V, µ ) V : finite-dimensional vector space (over R ) µ : Lie product µ : V × V → V bilinear: µ ( λx + ρy ) = λµ ( x ) + ρµ ( y ) antisymmetric: µ ( x, y ) = − µ ( y, x ) Jacobi: µ ( x, µ ( y, z )) = µ ( µ ( x, y ) , z ) + µ ( y, µ ( x, z )) C Basis { T A } , A = 1 , . . . , n of V ⇒ structure constants f s.t. AB C T C [ T A , T B ] ≡ i µ ( T A , T B ) = i f AB R + f BR R + f CR R = 0 S f BC S f CA S f AB f AR Jacobi: (relax)

  6. � � � f n − 1 ,n n L n GL ( n ) orbit of Q P ψ 1 P M Q GL ( n ) orbit of P 2 f 12 1 f 12 Figure 1: The space L n of n -dimensional Lie algebras (sketch). C = M A C f RS B T B R M B S ( M − 1 ) U U T ′ f ′ A = M A ⇒ AB Orb( P ) open ⇒ G P stable ( rigid ), otherwise unstable

  7. • Deformations G 0 = ( V, µ 0 ) , µ 0 ( X, Y ) ≡ [ X, Y ] 0 One-parameter (formal) deformation of G 0 : ∞ � ψ m ( X, Y ) t m deformed commutator : [ X, Y ] t = [ X, Y ] 0 + m =1 C T C [ T A , T B ] t = i f t t -dependent f ’s : AB ψ m : V × V → V , bilinear, antisymmetric ( 2-cochains over V ) Vector space of p -cochains : C p ( V ) 1-cochains: V → V linear, C 1 ( V ) ∼ Aut( V ) 0-cochains: constant maps, C 0 ( V ) ∼ V

  8. • Coboundary operator For any µ , coboundary operator s µ : C p → C p +1 , p � � � T A r , ψ ( p ) ( T A 1 , . . . , ˆ s µ ⊲ ψ ( p ) ( T A 0 , . . . , T A p ) = ( − 1) r µ T A r , . . . , T A p ) r =0 ( − 1) r + s ψ ( p ) � � � µ ( T A r , T A s ) , T A 0 , . . . , ˆ T A r , . . . , ˆ + T A s , . . . , T A p r<s Examples: ( φ ∈ C 1 , ψ ∈ C 2 ) s µ ⊲ φ ( A 1 , A 2 ) = [ A 1 , φ ( A 2 )] − [ A 2 , φ ( A 1 )] − φ ([ A 1 , A 2 ]) s µ ⊲ ψ ( A 1 , A 2 , A 3 ) = [ A 1 , ψ ( A 2 , A 3 )] − [ A 2 , ψ ( A 1 , A 3 )] + [ A 3 , ψ ( A 1 , A 2 )] − ψ ([ A 1 , A 2 ] , A 3 ) + ψ ([ A 1 , A 3 ] , A 2 ) − ψ ([ A 2 , A 3 ] , A 1 ) Jacobi for µ ⇒ s 2 µ = 0

  9. • Cohomology groups Jacobi for µ t ⇒ s µ 0 ⊲ ψ 1 = 0 ψ 1 ∈ Z 2 ( V, s µ ) ( 2-cocycle — similarly Z p ) ⇒ where µ t ( X, Y ) ≡ [ X, Y ] t = [ X, Y ] 0 + ψ 1 ( X, Y ) t + . . . The deformation is trivial iff ∃ φ ∈ C 1 ( V ) s.t. ψ 1 = s µ 0 ⊲ φ ψ 1 ∈ B 2 ( V, s µ ) ( 2-coboundary , trivial 2-cocycle — similarly B p ) ⇒ Non-trivial deformations generated by non-trivial 2-cocycles (tangent space interpretation, slide 6) H p ≡ Z p /B p p -th cohomology group of G 0 H 2 ( G 0 ) trivial ⇒ G 0 stable (converse not true) ⇒ semisimple Lie algebras stable

  10. • The ⊼ product ⊼ : C p × C q → C p + q − 1 α ⊼ β ( X 0 , . . . , X m + n ) = � � � sgn ( σ ) α β ( X σ (0) , . . . , X σ ( n ) ) , X σ ( n +1) , . . . , X σ ( m + n ) σ Graded commutator : � α, β � = α ⊼ β − ( − 1) mn β ⊼ α ( α ∈ C m +1 , β ∈ C n +1 ) µ ⊼ µ = 1 Jacobi for µ ⇔ 2 � µ, µ � = 0 In general: s µ ⊲ ψ = ( − 1) p � µ, ψ � Assume � µ, µ � = 0 ( µ Lie product). µ t = µ + φ t also Lie product iff s µ ⊲ φ t − 1 � µ t , µ t � = 0 ⇒ 2 � φ t , φ t � = 0 deformation equation

  11. • Obstructions and H 3 ∞ � φ n t n µ t = µ + φ t , φ t = n =1 ⇒ Defomation equation s µ ⊲ φ 1 = 0 s µ ⊲ φ 2 = 1 2 � φ 1 , φ 1 � s µ ⊲ φ 3 = � φ 1 , φ 2 � . . . H 3 ( G ) � = 0 φ 1 ∈ H 2 ( G ) might be non-integrable ⇒ Notice : � φ 1 , φ 1 � = 0 ⇒ µ + φ 1 t Lie product

  12. • Coboundary operator as exterior covariant derivative Π A : left invariant 1-forms, � Π A , T B � A = δ B ψ ( p ) → ψ B ⊗ T B ≡ 1 B Π A 1 . . . Π A p ⊗ T B p ! ψ A 1 ...A p A Π R Ω A s µ → ∇ = d + Ω , B = f RB B T B ) (components defined by: ψ ( p ) ( T A 1 , . . . , T A p ) = ψ A 1 ...A p Example: Galilean kinematics c c [ J a , J b ] = i ǫ ab J c , [ J a , K b ] = i ǫ ab K c , [ K a , K b ] = 0 µ = 1 ab Π a Π b ⊗ J c + ǫ b ⊗ K c ¯ c ab Π a Π c 2 ǫ a Π ¯ b ⊗ J c , with � χ KKJ , χ KKJ � = 0 Only non-trivial 2-cocycle: χ KKJ = 1 ab Π ¯ c 2 ǫ c ⇒ [ K a , K b ] t = i tǫ ab J c Experiment says: t = − 1 c 2

  13. Heisenberg’s Route Classical relativity G CR ( � = 0 ) � � [ J µν , J ρσ ] = i g µσ J νρ + g νρ J µσ − g µρ J νσ − g νσ J µρ � � [ J ρσ , P µ ] = i g µσ P ρ − g µρ P σ � � [ J ρσ , Z µ ] = i g µσ Z ρ − g µρ Z σ , plus M central. Algorithm: A Π A ⊗ T B (225 terms) B 1. Most general 1-cochain: φ = φ 2. Most general 2-coboundary: ψ = ∇ φ (1008 terms) AB Π A Π B ⊗ T C (1575 terms) C 3. Most general 2-cochain: χ = χ 4. Require χ a 2-cocycle, ∇ χ = 0 (5672 equations in 1575 unknowns) 5. ⇒ 221 2-cocycles χ i . For each χ i , solve χ i = ψ (348075 equations)

  14. 6. ⇒ only five χ i non-trivial: H 2 ( G CR ) = { [0] , [ ψ H ] , [ ψ PMZ ] , [ ψ ZMP ] , [ ψ PMP ] , [ ψ ZMZ ] } where ψ H = Π µ Π ˙ µ ⊗ M ψ PMZ = Π µ Π M ⊗ Z µ µ Π M ⊗ P µ ψ ZMP = Π ˙ ψ PMP = Π µ Π M ⊗ P µ µ Π M ⊗ Z µ ψ ZMZ = Π ˙ Deform along ψ H only → G PH ( q )

  15. Stable Quantum Relativistic Kinematics G PH ( q ) (Poincar´ e plus Heisenberg): � � [ J µν , J ρσ ] = i g µσ J νρ + g νρ J µσ − g µρ J νσ − g νσ J µρ � � [ J ρσ , P µ ] = i g µσ P ρ − g µρ P σ � � [ J ρσ , Z µ ] = i g µσ Z ρ − g µρ Z σ [ P µ , Z ν ] = i q g µν M µ PH ( q ) = 1 2Π αρ Π β ρ ⊗ J αβ + Π αρ Π ρ ⊗ P α + Π αρ Π ˙ ρ ⊗ Z α + q Π µ Π ˙ ⇒ µ ⊗ M H 2 ( G PH ( q )) = { [0] , [ ζ 1 ] , [ ζ 2 ] , [ ζ 3 ] } where ζ 1 = Π µ Π M ⊗ Z µ + q 2Π µ Π ν ⊗ J µν µ Π M ⊗ P µ + q ν ⊗ J µν ζ 2 = − Π ˙ 2Π ˙ µ Π ˙ µ Π M ⊗ Z µ − Π µ Π M ⊗ P µ + q Π µ Π ˙ ν ⊗ J µν ζ 3 = Π ˙

  16. � ζ i , ζ j � = 0 ⇒ µ ( q, � α ) = µ PH ( q ) + α 1 ζ 1 + α 2 ζ 2 + α 3 ζ 3 Lie product. Stable quantum relativistic kinematics: � � [ J µν , J ρσ ] = i g µσ J νρ + g νρ J µσ − g µρ J νσ − g νσ J µρ � � [ J ρσ , P µ ] = i g µσ P ρ − g µρ P σ � � [ J ρσ , Z µ ] = i g µσ Z ρ − g µρ Z σ [ P µ , Z ν ] = i qg µν M + i q α 3 J µν [ P µ , P ν ] = i q α 1 J µν [ Z µ , Z ν ] = i q α 2 J µν [ P µ , M ] = − i α 3 P µ + i α 1 Z µ [ Z µ , M ] = − i α 2 P µ + i α 3 Z µ provided α 2 3 � = α 1 α 2 . When α 2 3 = α 1 α 2 , χ = ζ 1 + ζ 2 is a non-trivial integrable 2-cocycle

  17. α 3 P AST G PH ( q ) G QR so (3 , 3) α 2 χ so (1 , 5) so (2 , 4) F UTURE E LSEWHERE Figure 2: The ( α 1 , α 2 , α 3 ) -deformation space of G PH ( q ) .

  18. Physical Implications (in progress) • S. Sivasubramanian, G. Castellani, N. Fabiano, A. Widom, J. Swain, Y. N. Srivastava, G. Vitiello, “Non-commutative Geometry and Measurements of Polarized Two Photon Coincidence Counts”, Annals Phys. 311 (2004) 191–203 • D. Ahluwalia-Khalilova, “A Freely Falling Frame at the Interface of the Gravitational and Quantum Realms”, Class. Quantum Grav. 22 (2005) 1433-1450 • D. Ahluwalia-Khalilova, “Minimal Spatio-Temporal Extent of Events, Neutrinos, and the Cosmological Constant Problem”, hep-th/0505124 (honorable mention in the 2005 Essay Competition of the Gravity Research Foundation) Standard wisdom ( q = 1 ): [ P µ , P ν ] = i 1 1 √ R 2 J µν R = Λ [ Z µ , Z ν ] = iℓ 2 ℓ 2 P J µν P ≡ G ⇒ noncommutative spacetime, energy- momentum space

  19. However: J µν , P µ : primitive (extensive), e.g. , total angular momentum: J tot = J 1 + J 2 Positions not primitive X µ not Lie algebra generators ⇒ X 12 = M 1 X 1 + M 2 X 2 Newtonian limit: M 1 + M 2 � � � ⇒ Z µ = X µ M primitive M = P µ P µ [ Z µ , Z ν ] = iq ( X µ P ν − X ν P µ ) = iqL µν Spinless particles: α 2 = 1 (commutative spacetime!)

  20. To Do List ◮ so (1 , 5) -representations, Casimirs ◮ Wigner like particle description ◮ Relativistic Z µ ? Higher spin? Zero mass? ◮ Non-commutative spacetime? ◮ Invariant length ⇒ momentum cutoff? ◮ Invariant length + Lorentz contraction = ? ◮ Supersymmetry?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend