ads 4d bps 3d correspondence
play

ADS 4D/BPS 3D Correspondence John Terning with Csaba Csaki, Yuri - PowerPoint PPT Presentation

ADS 4D/BPS 3D Correspondence John Terning with Csaba Csaki, Yuri Shirman Outline A Brief History of Monopoles SUSY: 4D -> 3D x S 1 N=2 SUSY in 4D Standard Model Conclusions J.J. Thomson q q g g J J = q g q g - g e R


  1. ADS 4D/BPS 3D Correspondence John Terning with Csaba Csaki, Yuri Shirman

  2. Outline A Brief History of Monopoles SUSY: 4D -> 3D x S 1 N=2 SUSY in 4D Standard Model Conclusions

  3. J.J. Thomson q q g g J J = q g • • q g - g e R Philos. Mag. 8 (1904) 331

  4. Dirac charge quantization Proc. Roy. Soc. Lond. A133 (1931) 60

  5. ‘t Hooft-Polyakov topological monopoles Nucl. Phys., B79 (1974) 276 JETP Lett., 20 (1974) 194

  6. ‘t Hooft-Polyakov hedgehog gauge φ a = ˆ rv h ( vr ) r j f ( vr ) W a i = ✏ air ˆ gr

  7. ‘t Hooft-Polyakov hedgehog gauge singular gauge φ a = ˆ U † τ a φ a U = v h ( vr ) τ 3 rv h ( vr ) r j f ( vr ) r 2 σ 1 − ˆ r 1 σ 2 ✓p ◆ 1 r 3 I + i ˆ W a i = ✏ air ˆ U = 1 + ˆ gr √ √ 1 + ˆ r 3 2

  8. ‘t Hooft-Mandelstam magnetic condensate confines electric charge High Energy Physics Ed. Zichichi, (1976) 1225 Phys. Rept. 23 (1976) 245

  9. 4D -> 3D x S 1 SUSY SU(N) with F flavors µ → ~ W a W, � a monopole solution

  10. 4D -> 3D x S 1 Wick rotation monopole solution

  11. 4D -> 3D x S 1 compactify monopole solution

  12. N-1 Embeddings of SU(2) N-1 diagonal generators   1     0 0 0 0 0 0 0 0 . . . 2 . . . . . . 1 − 1 0 0 0 0 0 0 0       2 . . . 2 . . . . . .  − 1   1    0 0 0 0 . . . 0 0 0       2 2 . . . . . . . . .     . . . .  . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . monopole solutions

  13. Roots of SU(3) T 3 , T 8 � � H =  1  0 0 2  = α · H − 1 0 0  2 0 0 0   0 0 0  = β · H 1 0 0  2 − 1 0 0 2 √ β = ( − 1 3 α = (1 , 0) 2 ) 2 ,

  14. N-1 Embeddings of SU(2) N-1 diagonal generators α 1 · H α 2 · H α 3 · H . . . . . . monopole charges α 1 α 2 α 3

  15. Roots of SU(3) T 3 , T 8 � � H = h φ i = a · H a = v 1 α 1 + v 2 β √ β = ( − 1 3 α = (1 , 0) 2 ) 2 ,

  16. Roots of SU(3) α 2 T 3 , T 8 � � H = h φ i = a · H a = v 1 α 1 + v 2 β α 1 α 0 √ β = ( − 1 3 α = (1 , 0) 2 ) 2 ,

  17. α 2 α 1 α 0

  18. Monopole Solutions h φ i = a · H a = v 1 α + v 2 β T 3 φ = v 1 α · H + ˆ β v 2 h ( v 2 r ) ; β = β · H r a T a T 3 φ = v 2 β · H + ˆ α v 1 h ( v 1 r ) ; α = α · H r a T a

  19. 4D -> 3D x S 1 Wick rotation monopole solution

  20. 4D -> 3D x S 1 KK monopole solution

  21. 3D x S 1 -> 4D N-1 monopole solutions + KK monopole + + + . . . -> 4D instanton + as R → ∞

  22. Instanton Zero Modes 2N gauginos . . . . . . 2F quarks

  23. Instanton Zero Modes 2N gauginos + + + . . . . . . + . . . → Poppitz & Unsal hep-th/0812.2085 
 . . .

  24. Instanton Zero Modes F=N-1 2N-2 . . . fermion ∂ W = mass ∂ Q ∂ Q

  25. Instanton Superpotential F=N-1 2N-2 . . . W = Λ 3 N − F det Q ∗ Q ∗ = Λ 3 N − F | det QQ | 2 det QQ

  26. Affleck-Dine Seiberg Superpotential ✓ Λ 3 N − F 1 ◆ N − F F < N W ADS = ( N − F ) det QQ where does this come from?

  27. Affleck-Harvey-Witten 1 X W 3D = Y i i Y i = e a · α i + i γ i φ = a · H R → 0 @ m � i = ✏ mnp F np i Nucl. Phys. B206 (1982) 413

  28. Finite R 1 X W = + η Y KK Y i i

  29. Mixed Coulomb Branch SU(3) with F=1   0 φ = 1 q 2diag( v, 0 , − v ) Q = Q =   0 SU(3)->U(1)xU(1) SU(3)->SU(2) SU(3)->U(1) monopoles are confined

  30. Mixed Coulomb Branch SU(3) with F=1 q ⌧ v monopoles are confined superHiggs mechanism gives fermions masses

  31. Mixed Coulomb Branch SU(3) with F=1 q ⌧ v 1 W = η Y 1 Y 2 + Y 1 Y 2 QQ ◆ 1 ✓ 2 η W = 2 det QQ

  32. Mixed Coulomb Branch SU(3) with F=1 q � 1 SU(3)->SU(2) in “4D”, F=0 R, v φ = a · H Λ 8 = Λ 6 L q 2 a = v ( α + β ) W = η L Y L + 1 Y L matches, since Y L ∝ Y 1 Y 2 q 2 η L = η q 2

  33. SU(N) with F < N-1 Q, Q have F VEVs φ has F zeros SU(N)->SU(F)xU(1) N-F SU(N)->SU(N-F) SU(N)->U(1) N-F-1 F+1 monopoles are confined 2F gauginos get masses 2(F+1)-2F= 2 2 gaugino legs => ADS super potential

  34. Conclusions Monopoles are still fascinating after all these years Confined monopoles relate 3D BPS monopoles to the 4D ADS superpotential

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend