a tutorial on radiation dose and dose rate
play

A Tutorial on Radiation Dose and Dose Rate Kurt Sickafus Dose = - PowerPoint PPT Presentation

A Tutorial on Radiation Dose and Dose Rate Kurt Sickafus Dose = Absorbed Energy Density Absorbed energy normalized by weight, volume, atoms, etc. 1 Gy = 1 J kg SI units 2 Water: heat to boiling point J H 2 O = 4.1813 c p g K (@


  1. A Tutorial on Radiation Dose and Dose Rate Kurt Sickafus

  2. Dose = Absorbed Energy Density Absorbed energy normalized by weight, volume, atoms, etc. 1 Gy = 1 J kg SI units 2

  3. Water: heat to boiling point J H 2 O = 4.1813 c p g ⋅ K (@ 25°C) specific heat of water Δ T = 80 K g × 10 3 g H 2 O Δ T = 334.5 J c p kg = 3.345 ⋅ 10 5 J kg = 0.3345 MGy Absorbed Energy 3

  4. Projectile-Target Interactions # events <volume> or <weight> = ρ σ ϕ t • • •

  5. Projectile-Target Interactions atomic cross- • • flux • time density section ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ # events atoms area projectiles [ ] volume = ρ a ⎦ σ ⎦ ϕ ⎦ t time ⎣ ⎣ ⎣ area i time volume atom ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ # events atoms area projectiles [ ] weight = ρ w ⎦ σ ⎦ ϕ ⎦ t time ⎣ ⎣ ⎣ area i time weight atom

  6. Projectile-Target Interactions fluence = flux • time ⎡ ⎤ ⎡ ⎤ Φ projectiles ⎥ = ϕ projectiles [ ] ⎥ t time ⎢ ⎢ ⎣ ⎦ ⎣ ⎦ area i time area

  7. Projectile-Target Interactions atomic cross- • • fluence density section ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ # events atoms area projectiles volume = ρ a ⎦ σ ⎦ Φ ⎣ ⎣ ⎣ ⎦ volume atom area ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ # events atoms area projectiles weight = ρ w ⎦ σ ⎦ Φ ⎣ ⎣ ⎦ ⎣ weight atom area

  8. Projectile-Target Interactions cross- • fluence section # events ⎡ ⎤ ⎡ ⎤ area projectiles = σ ⎦ Φ volume ⎣ ⎣ ⎦ ⎡ ⎤ atoms atom area ρ a ⎣ ⎦ volume

  9. Projectile-Target Interactions Leading to Atomic Displacements displacement dpa = • fluence cross- section # atomic displacements ⎡ ⎤ ⎡ ⎤ area projectiles = σ ⎦ Φ volume ⎣ ⎣ ⎦ ⎡ ⎤ atoms atom area ρ a ⎣ ⎦ volume Ballistic ⎡ ⎤ ⎡ ⎤ displacements area projectiles = σ ⎦ Φ ⎣ ⎣ ⎦ Dose atom atom area

  10. Electron irradiation-induced amorphization of powellite (CaMoO 4 ) 300 keV electrons room-temperature irradiation conditions

  11. Electron irradiation-induced amorphization of powellite (CaMoO 4 ) Two components of damage: 1. electronic component (electron excitation/ionization; radiolysis) 2. nuclear component (ballistic or displacement damage)

  12. 1 . Electronic Stopping

  13. Electron Excitation/Ionization Bethe-Ashkin expression for ionization energy loss per unit length H. A. Bethe, and J. Ashkin, in Experimental Nuclear Physics. Volume I , edited by E. Segrè (John Wiley & Sons, Inc., New York, 1953), pp. 166-357.

  14. Electron Excitation/Ionization Bethe-Ashkin expression for ionization energy loss per unit length relativistic expression ⎧ ⎫ ⎛ ⎞ E 0 β 2 E ⎪ Ln ⎪ ⎜ ⎟ 2 J 2 (1 − β 2 ) ⎝ ⎠ ⎪ ⎪ ( ) Ln2 ⎪ ⎪ − 2 1 − β 2 − 1 − β 2 dx = 2 π e 4 ρ e ⎪ ⎪ − dE ⎨ ⎬ β 2 E 0 ⎪ ⎪ + 1 − β 2 ⎪ ⎪ ( ) ⎪ ⎪ + 1 2 8 1 − 1 − β 2 ⎪ ⎪ ⎩ ⎭

  15. E 0 = m e c 2 = rest energy of the electron m e = rest mass of the electron c = speed of light e 2 = 14.4 eV ⋅ Å

  16. β = v c v = velocity of electron c = speed of light 2 ⎛ ⎞ E 0 β = 1 − ⎜ ⎟ E 0 + E ⎝ ⎠ E 0 = rest energy of the electron E = kinetic energy of the electron

  17. ρ e = Z ⋅ ρ a ρ e = electron density Z = atomic number ρ a = atomic density

  18. J = 9.76 Z + 58.5 Z − 0.19 (eV) = mean electron excitation potential M. J. Berger, and S. M. Seltzer, Nat. Acad. Sci. / Nat. Res. Council Publ. 1133 (Washington, 1964), p. 205.

  19. Bragg’s Rule for Additivity of Stopping Powers W. H. Bragg, and M. A. Elder, Phil. Mag. 10 , 318 (1905)

  20. Stopping Power ⎛ ⎞ eV ⋅ Å 2 ( ) = 1 dE ε e = S e E ⎜ ⎟ atom ⋅ e − ρ a ⎝ ⎠ dx e

  21. Bragg’s Rule for Additivity of Stopping Powers For binary compound with molecular unit, AmBn : A + n ε A m B n = m ε ε B e e e where m is the number of A atoms in molecule AmBn and n is the number of B atoms in molecule AmBn One can show that: A m B n A B dE A m B n = dE + dE A m B n ε = ρ m dx e dx e dx e e where ρ m A m B n is the molecular density of AmBn molecules in the compound.

  22. Ionization stopping in powellite dE / dx ( E = 300 keV) = -0.0729 dE / dx (eV/Å• e - ) E (eV) electron energy

  23. E = 300 keV β = 0.776526 dE / dx ( E = 300 keV) = -0.0729 eV/Å• e - thickness = 1000 Å TEM sample thickness Total ionization energy loss over sample thickness = 72.9 eV/ e - = 1.17x10 -17 J/ e -

  24. e − e − e − ϕ = 10 7 nm 2 ⋅ s = 10 5 Å 2 ⋅ s = 10 21 cm 2 ⋅ s electron flux t = 5 min. = 300 s irradiation time e − Φ = 3 ⋅ 10 7 Å 2 electron fluence

  25. Areal Energy Density = dE ⋅ Φ dx electronic = 3.504 ⋅ 10 − 10 J Å 2 Total Energy Density = Areal Energy Density thickness = 3.504 ⋅ 10 − 13 J Å 3

  26. ρ w = 4.259 ⋅ 10 − 27 kg Å 3 Dose = 8.2 ⋅ 10 13 J kg = 82 TGy Magnitude of dose: Tens of TeraGray !!

  27. 2 . Nuclear Stopping

  28. Electron displacement damage calculation Primary damage cross-section after Seitz & Koehler (1956): F. Seitz, and J. S. Koehler, in Solid State Physics: Advances in Research & Applications , edited by F. Seitz, and D. Turnbull (Academic Press, 1956), pp. 305-448. Based on the relativistic electron cross-section expression derived by McKinley & Feshbach (1948): W. A. McKinley, Jr., and H. Feshbach, Physical Review 74 , 1759 (1948). Total cross-section (primary plus secondaries) after Oen (1973): O. S. Oen, (Oak Ridge National Laboratory, Oak Ridge, TN, 1973), pp. 204.

  29. Differential displacement cross-section, d σ ⎡ ⎤ ⎧ ⎫ d σ ( T ) = π ′ b 2 dT T m 1 − β 2 T T − T ⎢ ⎥ + π ′ α β ⎨ ⎬ 4 T 2 ⎢ T m T m T m ⎥ ⎩ ⎭ ⎣ ⎦ where T is the kinetic energy of the electron 2 ⎛ ⎞ E 0 β = v / c = 1 − ⎜ ⎟ E 0 + E ⎝ ⎠ α = α Z ′ where α is the fine structure constant (~1/137)

  30. 2 ⎛ ⎞ e 2 b 2 = 4 Z 2 1 ′ β 4 γ 2 ⎜ ⎟ ⎝ ⎠ E 0 where 1 γ = 1 − β 2

  31. T m = maximum energy transfer from e − to target atom ⎛ ⎞ 4 m e M E T m = 2 E 1 + ⎜ ⎟ ( ) ⎝ ⎠ m e + M 2 E 0 where E is the incident electron energy T m (eV) (maximum energy transfer to target atom) O Ca Mo E (keV) (incident electron energy)

  32. E = 300 keV Z Ca = 20 Ca = 21.245 eV T m Z Mo = 42 Mo = 8.8756 eV T m Z O = 8 O = 53.219 eV T m Z ave = 15.67 ave = 25.54 eV T m

  33. E d = 40 eV Z Ca = 20 = 493 keV Ca E threshold Z Mo = 42 = 920 keV Mo E threshold Z O = 8 = 237 keV O E threshold Z ave = 15.67

  34. E d = 8 eV Z Ca = 20 = 130 keV Ca E threshold Z Mo = 42 = 275 keV Mo E threshold Z O = 8 = 55.3 keV O E threshold Z ave = 15.67

  35. Primary displacement cross-section: ( T ) < area > ⎡ ⎤ T m ∫ σ p ( E ) = d σ ⎢ ⎥ ⎣ ⎦ atom E d where E d is the displacement threshold energy Cascade cross-section: ( T ) < area > ⎡ ⎤ T m ∫ σ tot ( E ) = ν ( T ) d σ ⎢ ⎥ ⎣ ⎦ atom E d where ν ( T ) is the number of secondary displacements, given most simply by the Kinchin-Pease expression: ν ( T ) = 0; T < E d ν ( T ) = 1; E d ≤ T < 2 E d ν ( T ) = T ; T ≥ 2 E d 2 E d

  36. E = 300 keV E d = 25 eV Z ave = 15.67 = 295 keV ave E threshold ave = 25.54 eV T m 2 E d = 50 eV σ tot ( E ) = σ p ( E ) = 0.588 barn = 5.88 ⋅ 10 − 9 Å 2 atom 1 barn = 10 -24 cm 2 = 10 − 8 Å 2

  37. e − e − e − ϕ = 10 7 nm 2 ⋅ s = 10 5 Å 2 ⋅ s = 10 21 cm 2 ⋅ s electron flux t = 5 min. = 300 s irradiation time e − Φ = 3 ⋅ 10 7 Å 2 electron fluence

  38. Total displacement damage dose displacements per atom = σ tot Φ atom × 3 ⋅ 10 7 e − = 5.88 ⋅ 10 − 9 Å 2 Å 2 = 0.18 dpa Presumably, this magnitude of displacement damage is not sufficient to induce a crystal- to-amorphous phase transformation

  39. Displacement cross-section, σ p ( E , E d ) versus e - beam energy, E , and displacement threshold energy, E d , for oxygen (O) target atoms ( Z = 8) σ p (barns/atom) E d (eV) 4 5 6 7 8 910 11 E (keV) Compare this plot to Fig. 6 in P. S. Bell, and M. H. Lewis, Phil. Mag. 29, 1175 (1974).

  40. Displacement cross-section, σ p ( E , E d ) versus e - beam energy, E , and displacement threshold energy, E d , for vanadium (V) target atoms ( Z = 23) E d (eV) 4 5 σ p (barns/atom) 6 7 8 9 10 11 E (keV) Compare this plot to Fig. 6 in P. S. Bell, and M. H. Lewis, Phil. Mag. 29, 1175 (1974).

  41. Dose Rate Ming’s experiment on CaMoO 4 : Dose Rate = 82 TGy = 0.273 T Gy = 273 GGy 300 s s s e − e − e − ϕ = 10 7 nm 2 ⋅ s = 10 5 Å 2 ⋅ s = 10 21 cm 2 ⋅ s electron flux

  42. Dose Rate Field Emission Gun (FEG) Scanning Transmission Electron Microscope (STEM) probe: 1 nA in 1 nm diam. probe e − ϕ = 6.24 ⋅ 10 9 nm 2 ⋅ s e − 6.24 times = 6.24 ⋅ 10 7 Å 2 ⋅ s greater than Ming’s e − experiment = 6.24 ⋅ 10 23 cm 2 ⋅ s electron flux

  43. Dose Rate Field Emission Gun (FEG) Scanning Transmission Electron Microscope (STEM) probe: 1 nA in 1 nm diam. probe Dose Rate = 6.24 × 273 GGy s = 1.7 ⋅ 10 3 GGy s = 1.70 TGy s

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend