a tractable state space model for symmetric positive
play

A Tractable State-Space Model for Symmetric Positive-Definite - PowerPoint PPT Presentation

A Tractable State-Space Model for Symmetric Positive-Definite Matrices Jesse Windle 1 Carlos Carvalho 2 August 9, 2015 1 Hi Fidelity Genetics 2 The University of Texas at Austin 1 The Basic Story 1. The Bayesian analysis of


  1. A Tractable State-Space Model for Symmetric Positive-Definite Matrices Jesse Windle 1 Carlos Carvalho 2 August 9, 2015 1 Hi Fidelity Genetics 2 The University of Texas at Austin 1

  2. The Basic Story 1. The Bayesian analysis of covariance-matrix-valued state-space models can be difficult. 2. The subsequent model is computationally tractable, but it comes at a cost. 2

  3. State-Space Models System’s parameters, θ x t − 1 x t +1 x t Latent States: y t − 1 y t y t +1 Observations: 3

  4. State-Space Models System’s parameters, θ x t − 1 x t x t +1 Latent States: y t − 1 y t +1 y t Observations: � T �� T � � � p ( y t | x t , θ ) p ( x t | x t − 1 , θ ) p ( x 1 | θ ) i =1 i =2 3

  5. State-Space Models System’s parameters, θ x t − 1 x t +1 x t Latent States: y t − 1 y t y t +1 Observations: Filter: p ( x t | y 1: t ) . 3

  6. State-Space Models System’s parameters, θ x t − 1 x t +1 x t Latent States: y t − 1 y t y t +1 Observations: Smooth: p ( x 1: T | y 1: T ) . 3

  7. State-Space Models System’s parameters, θ x t − 1 x t +1 x t Latent States: y t − 1 y t y t +1 Observations: Infer: p ( θ | y 1: T ) . 3

  8. State-Space Models in Finance R t ∼ N (0 , V t ) , V t ∼ P ( V t − 1 ) . 4

  9. State-Space Models in Finance R t ∼ N (0 , V t ) , V t ∼ P ( V t − 1 ) . 4

  10. State-Space Models in Finance R t ∼ N (0 , V t ) , V t ∼ P ( V t − 1 ) . 5

  11. State-Space Models in Finance R t , i ∼ N (0 , V t / k ) , i = 1 , . . . , k , V t ∼ P ( V t − 1 ) . 5

  12. State-Space Models in Finance k � R t , i R ′ Y t ∼ W m ( k , V t / k ) , Y t = t , i i =1 V t ∼ P ( V t − 1 ) . 5

  13. State-Space Models in Finance k � Y t ∼ W m ( k , X − 1 R t , i R ′ / k ) , Y t = t t , i i =1 X t ∼ P ( X t − 1 ) . 5

  14. Our hands are now tied � T � T � � � � p ( Y t | X t , θ ) p ( X t | X t − 1 , θ ) p ( X 1 | θ ) i =1 i =2 � �� � Wishart Problem: Moving around the state-space. x t = Lower( X t ) ∼ GP ? � � d 1 c c d 2 6

  15. Pick a new set of coordinates? Matrix logarithm [Bauer and Vorkink, 2011]: X t = U t exp( D t ) U ′ t , log X t = U t D t U ′ t , Z t = Lower(log X t ) . � T � T � � � � p ( Y t | X t , θ ) p ( X t | X t − 1 , θ ) p ( X 0 | θ ) i =1 i =1 � �� � Wishart p ( X 1: T | Y 1: T , θ ) → Gibbs + Metropolis-Hastings. p ( X t | X − t , Y 1: T , θ ) . 7

  16. Pick a new set of coordinates? LDL decomposition [Chiriac and Voev, 2010, Loddo et al., 2011]: X t = L t exp( D t ) L ′ t , Z t = ( StrictLower( L t ) , Diag( D t ) ) . � T � T � � � � p ( Y t | X t , θ ) p ( X t | X t − 1 , θ ) p ( X 0 | θ ) i =1 i =1 � �� � Wishart p ( X 1: T | Y 1: T , θ ) → Gibbs + Metropolis-Hastings. p ( X t | X − t , Y 1: T , θ ) . 7

  17. Use the original coordinates? X t = S t Ψ t S ′ t , S t S ′ t = f ( X t − 1 ) Source f ( X t − 1 ) Ψ t p ( X 1: T | Y 1: T , θ ) λ − 1 X t − 1 (1) W m ( ρ, I m /ρ ) � � λ − 1 X t − 1 n 2 , 1 (2) β m 2 (1) Philipov and Glickman [2006], Asai and McAleer [2009] (2) Uhlig [1997], Rank m=1 Case Only Other relevant work: Gourieroux et al. [2009], Fox and West [2011]; Prado and West [2010], Jin and Maheu [2013], Shirota et al. [2015]. GARCH literature... Bauwens et al. [2006]. 8

  18. Use the original coordinates? X t = S t Ψ t S ′ t , S t S ′ t = f ( X t − 1 ) Source f ( X t − 1 ) Ψ t p ( X 1: T | Y 1: T , θ ) λ − 1 X t − 1 (1) W m ( ρ, I m /ρ ) Gibbs + MH � � λ − 1 X t − 1 n 2 , 1 (2) β m p ( X t | Y 1: t , θ ) 2 (1) Philipov and Glickman [2006], Asai and McAleer [2009] (2) Uhlig [1997], Rank m=1 Case Only Other relevant work: Gourieroux et al. [2009], Fox and West [2011]; Prado and West [2010], Jin and Maheu [2013], Shirota et al. [2015]. GARCH literature... Bauwens et al. [2006]. 8

  19. Use the original coordinates? X t = S t Ψ t S ′ t , S t S ′ t = f ( X t − 1 ) Source f ( X t − 1 ) Ψ t p ( X 1: T | Y 1: T , θ ) λ − 1 X t − 1 (1) W m ( ρ, I m /ρ ) Gibbs + MH � � λ − 1 X t − 1 n 2 , 1 (2) β m p ( X t | Y 1: t , θ ) 2 (1) Philipov and Glickman [2006], Asai and McAleer [2009] (2) Uhlig [1997], Rank m=1 Case Only Other relevant work: Gourieroux et al. [2009], Fox and West [2011]; Prado and West [2010], Jin and Maheu [2013], Shirota et al. [2015]. GARCH literature... Bauwens et al. [2006]. 8

  20. Uhlig Extension t = λ − 1 X t − 1 X t = S t Ψ t S ′ t , S t S ′ � n � 2 , k Ψ t ∼ β m , k ∈ N ; 2 Easy to compute: ◮ p ( X t | Y 1: t , θ ) Wishart ◮ p ( X t | Y 1: t , X t +1 , θ ) Shifted Wishart ◮ p ( X 1: T | Y 1: T , θ ) 9

  21. Uhlig Extension t = λ − 1 X t − 1 X t = S t Ψ t S ′ t , S t S ′ � n � 2 , k Ψ t ∼ β m , k ∈ N ; 2 Easy to compute: ◮ p ( X t | Y 1: t , θ ) Wishart ◮ p ( X t | Y 1: t , X t +1 , θ ) Shifted Wishart ◮ p ( X 1: T | Y 1: T , θ ) ◮ p ( Y t | Y t − 1 , θ ) Multivariate compound gamma = ⇒ p ( Y 1: T | θ ). 9

  22. Uhlig Extension t = λ − 1 X t − 1 X t = S t Ψ t S ′ t , S t S ′ � n � 2 , k Ψ t ∼ β m , k ∈ N ; 2 Easy to compute: ◮ p ( X t | Y 1: t , θ ) Wishart ◮ p ( X t | Y 1: t , X t +1 , θ ) Shifted Wishart ◮ p ( X 1: T | Y 1: T , θ ) ◮ p ( Y t | Y t − 1 , θ ) Multivariate compound gamma = ⇒ p ( Y 1: T | θ ). Only need to record: Σ t = λ Σ t − 1 + Y t . 9

  23. How does this work? Key Transformation Wishart Mult. Beta ⊥ X t − 1 Ψ t Muirhead [1982], Uhlig [1997], g D´ ıaz-Garc´ ıa and J´ aimez [1997]: λ X t Z t ⊥ Wishart Wishart 10

  24. How does this work? Key Transformation Wishart Mult. Beta ⊥ X t − 1 Ψ t Muirhead [1982], Uhlig [1997], g D´ ıaz-Garc´ ıa and J´ aimez [1997]: λ X t Z t ⊥ Wishart Wishart Density of rank-deficient Wishart π − ( mk − k 2 ) / 2 | L | ( k − m − 1) / 2 � tr − 1 � 2 V − 1 Y exp � k � 2 mk / 2 Γ k | V | k / 2 2 k k k � � � ( dY ) = 2 − k l m − k ( l i − l j )( H ′ 1 d H 1 ) ∧ dl i . i i =1 i < j i =1 (Introductory text: Mikusi´ nski and Taylor [2002]) 10

  25. Example ◮ 30 stocks from DJIA as of Oct. 2010. ◮ Feb. 27, 2007 to Oct. 29, 2010. ◮ Y t : Realized kernels (e.g. Barndorff-Nielsen et al. [2009]) 11

  26. Prediction Exercise • Predictive portfolios: π ′ ˆ π ∗ t = argmin V t π π ′ 1 =1 ˆ V t = E [ V t | Y 1: t − 1 ] . • Performance: ′ r t ) . portfolio variation = var( π ∗ t root mean variation FSV Extension 0.00977 Uhlig Extension 0.00936. 12

  27. Prediction Exercise 13

  28. Drawbacks Discussion: ◮ Roberto Casarin ◮ Catherine Scipione Forbes ◮ Enrique ter Horst, German Molina 14

  29. Drawback: X t is not stationary (realism) 15

  30. Drawback: X t is not stationary (predictions) 16

  31. Drawback: X t is not stationary (predictions) 16

  32. Drawback: X t is not stationary (predictions) Predictions of future variance: M h = E [ X − 1 t + h | X − 1 ] , h > 0 . t Konno [1988]: M h = n + k − m − 1 λ M h − 1 n − m − 1 where M 0 = X − 1 . t 17

  33. What does this work at all? 18

  34. What does this work at all? 18

  35. Volatility models: think in terms of forecasts ◮ Uhlig extension : � t − 1 λ k � � E [ X − 1 λ i Y t − i + λ t Σ 0 t +1 | Y 1: t , θ ] = . n − m − 1 i =0 19

  36. Volatility models: think in terms of forecasts ◮ Uhlig extension (EWMA): � t − 1 λ k � � E [ X − 1 λ i Y t − i + λ t Σ 0 t +1 | Y 1: t , θ ] = . n − m − 1 i =0 n + k − m − 1 λ = 1 = ⇒ n − m − 1 � t − 1 � � E [ X − 1 λ i Y t − i + λ t Σ 0 t +1 | Y 1: t , θ ] = (1 − λ ) . i =0 19

  37. Volatility models: think in terms of forecasts (continued) ◮ “GARCH” (EWMA-MR): t � � � E [ X − 1 λ i Y t − i t +1 | Y 1: t , θ ] ≃ (1 − γ ) C + γ (1 − λ ) . i =0 ◮ Univariate stochastic volatility: EWMA-MR of the log squared returns ◮ Leverage effects: asymmetrically weight past observations depending on market movements. 20

  38. Estimating θ = ( n , k , λ, Σ 0 ) The model: Y t = W m ( k , ( kX t ) − 1 ) , t = λ − 1 X t − 1 , X t = S t Ψ t S ′ t , S t S ′ � n � 2 , k Ψ t ∼ β m , k ∈ N . 2 Conjugate prior: X 1 ∼ W m ( n , ( λ k Σ 0 ) − 1 ) . Y − τ , . . . , Y 0 , Y 1 , . . . , Y T . t − 1 − τ � � λ i Y t − i + λ t Σ 0 → Σ 0 ( λ ) = λ i Y − i + 0 . Σ t = i =0 i =0 21

  39. Estimating θ = ( n , k , λ, Σ 0 ) The model: Y t = W m ( k , ( kX t ) − 1 ) , t = λ − 1 X t − 1 , X t = S t Ψ t S ′ t , S t S ′ � n � 2 , k Ψ t ∼ β m , k ∈ N . 2 Conjugate prior: X 1 ∼ W m ( n , ( λ k Σ 0 ) − 1 ) . Y − τ , . . . , Y 0 , Y 1 , . . . , Y T . t − 1 − τ � � λ i Y t − i + λ t Σ 0 → Σ 0 ( λ ) = λ i Y − i + 0 . Σ t = i =0 i =0 21

  40. Recapitulation 1. Given our specific observation distribution, it isn’t easy to construct tractable matrix-valued state-space models. 2. Uhlig essentially provides a way to do this, but it comes with a cost. Slides with references: http://www.jessewindle.com/ 22

  41. Thank you for your attention. http://www.jessewindle.com/ 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend