a stable scheme for simulation of incompressible flows in
play

A stable scheme for simulation of incompressible flows in - PowerPoint PPT Presentation

A stable scheme for simulation of incompressible flows in time-dependent domains and hemodynamic applications Yuri Vassilevski 1 , 2 , 3 Maxim Olshanskii 4 Alexander Danilov 1 , 2 , 3 Alexander Lozovskiy 1 Victoria Salamatova 1 , 2 , 3 1 Marchuk


  1. A stable scheme for simulation of incompressible flows in time-dependent domains and hemodynamic applications Yuri Vassilevski 1 , 2 , 3 Maxim Olshanskii 4 Alexander Danilov 1 , 2 , 3 Alexander Lozovskiy 1 Victoria Salamatova 1 , 2 , 3 1 Marchuk Institute of Numerical Mathematics RAS 2 Moscow Institute of Physics and Technology 3 Sechenov University 4 University of Houston Modeling, Simulation and Optimization of the Cardiovascular system October 23, 2018, Magdeburg The work was supported by the Russian Science Foundation

  2. Workshop Announcement, 6-8 November 2018 Marchuk Institute of Numerical Mathematics RAS, Moscow, Russia The 10th Workshop on Numerical Methods and Mathematical Modelling in Biology and Medicine www.dodo.inm.ras.ru/biomath

  3. Workshop Announcement, 7-11 October 2019 Far East Federal University, island Russky, Vladivostok, Russia The Fourth German-Russian Workshop on Numerical Methods and Mathematical Modelling in Geophysical and Biomedical Sciences

  4. Acknowledge the talk by Boris Muha: Stability and convergence analysis of the kinematically coupled scheme for the fluid-structure interaction

  5. Fluid-Structure Interaction

  6. Fluid-Structure Interaction problem Prerequisites for FSI ◮ reference subdomains Ω f , Ω s ◮ transformation ξ maps Ω f , Ω s to Ω f ( t ), Ω s ( t ) ◮ v and u denote velocities and displacements in � Ω := Ω f ∪ Ω s ◮ ξ ( x ) := x + u ( x ), F := ∇ ξ = I + ∇ u , J := det( F ) ◮ Cauchy stress tensors σ f , σ s ◮ pressures p f , p s ◮ density ρ f is constant

  7. Fluid-Structure Interaction problem Universal equations in reference subdomains Dynamic equations  ρ − 1 s div ( J σ s F − T )  in Ω s ,  ∂ v � � �� ∂ t = v − ∂ u  ( J ρ f ) − 1 div ( J σ f F − T ) − ∇ v F − 1 in Ω f  ∂ t

  8. Fluid-Structure Interaction problem Universal equations in reference subdomains Dynamic equations  ρ − 1 s div ( J σ s F − T )  in Ω s ,  ∂ v � � �� ∂ t = v − ∂ u  ( J ρ f ) − 1 div ( J σ f F − T ) − ∇ v F − 1 in Ω f  ∂ t Kinematic equation ∂ u ∂ t = v in Ω s

  9. Fluid-Structure Interaction problem Universal equations in reference subdomains Dynamic equations  ρ − 1 s div ( J σ s F − T )  in Ω s ,  ∂ v � � �� ∂ t = v − ∂ u  ( J ρ f ) − 1 div ( J σ f F − T ) − ∇ v F − 1 in Ω f  ∂ t Kinematic equation ∂ u ∂ t = v in Ω s Fluid incompressibility J ∇ v : F − T = 0 div ( J F − 1 v ) = 0 in Ω f or in Ω f

  10. Fluid-Structure Interaction problem Universal equations in reference subdomains Dynamic equations  ρ − 1 s div ( J σ s F − T )  in Ω s ,  ∂ v � � �� ∂ t = v − ∂ u  ( J ρ f ) − 1 div ( J σ f F − T ) − ∇ v F − 1 in Ω f  ∂ t Kinematic equation ∂ u ∂ t = v in Ω s Fluid incompressibility J ∇ v : F − T = 0 div ( J F − 1 v ) = 0 in Ω f or in Ω f Constitutive relation for the fluid stress tensor σ f = − p f I + µ f (( ∇ v ) F − 1 + F − T ( ∇ v ) T ) in Ω f

  11. FSI problem User-dependent equations in reference subdomains Constitutive relation for the solid stress tensor σ s = σ s ( J , F , p s , λ s , µ s , . . . ) in Ω s 1 Michler et al (2004), Hubner et al (2004), Hron&Turek (2006),...

  12. FSI problem User-dependent equations in reference subdomains Constitutive relation for the solid stress tensor σ s = σ s ( J , F , p s , λ s , µ s , . . . ) in Ω s Monolithic approach 1 : Extension of the displacement field to the fluid domain G ( u ) = 0 in Ω f , u = u ∗ on ∂ Ω f 1 Michler et al (2004), Hubner et al (2004), Hron&Turek (2006),...

  13. FSI problem User-dependent equations in reference subdomains Constitutive relation for the solid stress tensor σ s = σ s ( J , F , p s , λ s , µ s , . . . ) in Ω s Monolithic approach 1 : Extension of the displacement field to the fluid domain G ( u ) = 0 in Ω f , u = u ∗ on ∂ Ω f for example, vector Laplace equation or elasticity equation 1 Michler et al (2004), Hubner et al (2004), Hron&Turek (2006),...

  14. FSI problem User-dependent equations in reference subdomains Constitutive relation for the solid stress tensor σ s = σ s ( J , F , p s , λ s , µ s , . . . ) in Ω s Monolithic approach 1 : Extension of the displacement field to the fluid domain G ( u ) = 0 in Ω f , u = u ∗ on ∂ Ω f for example, vector Laplace equation or elasticity equation + Initial, boundary, interface conditions ( σ f F − T n = σ s F − T n ) 1 Michler et al (2004), Hubner et al (2004), Hron&Turek (2006),...

  15. Numerical scheme ◮ Conformal triangular or tetrahedral mesh Ω h in � Ω ◮ LBB-stable pair for velocity and pressure P 2 / P 1 , P 2 for displacements ◮ Fortran open source software Ani2D , Ani3D (Advanced numerical instruments 2D/3D, K.Lipnikov, Yu.Vassilevski et al.) http://sf.net/p/ani3d/ : http://sf.net/p/ani2d/ ◮ mesh generation ◮ FEM systems ◮ algebraic solvers

  16. Numerical scheme Find { u k +1 , v k +1 , p k +1 } ∈ V 0 h × V h × Q h s.t. � ∂ u � v k +1 = g h ( · , ( k + 1)∆ t ) on Γ f 0 , = v k +1 on Γ fs ∂ t k +1

  17. Numerical scheme Find { u k +1 , v k +1 , p k +1 } ∈ V 0 h × V h × Q h s.t. � ∂ u � v k +1 = g h ( · , ( k + 1)∆ t ) on Γ f 0 , = v k +1 on Γ fs ∂ t k +1 where V h ⊂ H 1 ( � Ω) 3 , Q h ⊂ L 2 ( � Ω) , V 0 h = { v ∈ V h : v | Γ s 0 ∪ Γ f 0 = 0 } , V 00 h = { v ∈ V 0 h : v | Γ fs = 0 } � ∂ f � := 3 f k +1 − 4 f k + f k − 1 ∂ t 2∆ t k +1

  18. Numerical scheme � � ∂ v � � u k ) S ( u k +1 , � u k ) : ∇ ψ d Ω + J k F ( � ρ s ψ d Ω + ∂ t Ω s Ω s k +1 � � � ∂ v � � ∂ u � � � � v k − ρ f J k ∇ v k +1 F − 1 ( � u k ) ρ f J k ψ d Ω + � ψ d Ω + ∂ t ∂ t Ω f Ω f k +1 k � � u k v k +1 : D � p k +1 J k F − T ( � ∀ ψ ∈ V 0 u k ) : ∇ ψ d Ω = 0 2 µ f J k D � u k ψ d Ω − h Ω f Ω { A } s := 1 f k := 2 f k − f k − 1 , 2 ( A + A T ) u k ) , � D u v := {∇ vF − 1 ( u ) } s , J k := J ( �

  19. Numerical scheme � � ∂ v � � u k ) S ( u k +1 , � u k ) : ∇ ψ d Ω + J k F ( � ρ s ψ d Ω + ∂ t Ω s Ω s k +1 � � � ∂ v � � ∂ u � � � � v k − ρ f J k ∇ v k +1 F − 1 ( � u k ) ρ f J k ψ d Ω + � ψ d Ω + ∂ t ∂ t Ω f Ω f k +1 k � � u k v k +1 : D � p k +1 J k F − T ( � ∀ ψ ∈ V 0 u k ) : ∇ ψ d Ω = 0 2 µ f J k D � u k ψ d Ω − h Ω f Ω � � ∂ u � � � v k +1 φ d Ω + G ( u k +1 ) φ d Ω = 0 ∀ φ ∈ V 00 φ d Ω − h ∂ t Ω s Ω s Ω f k +1 { A } s := 1 f k := 2 f k − f k − 1 , 2 ( A + A T ) u k ) , � D u v := {∇ vF − 1 ( u ) } s , J k := J ( �

  20. Numerical scheme � � ∂ v � � u k ) S ( u k +1 , � u k ) : ∇ ψ d Ω + J k F ( � ρ s ψ d Ω + ∂ t Ω s Ω s k +1 � � � ∂ v � � ∂ u � � � � v k − ρ f J k ∇ v k +1 F − 1 ( � u k ) ρ f J k ψ d Ω + � ψ d Ω + ∂ t ∂ t Ω f Ω f k +1 k � � u k v k +1 : D � p k +1 J k F − T ( � ∀ ψ ∈ V 0 u k ) : ∇ ψ d Ω = 0 2 µ f J k D � u k ψ d Ω − h Ω f Ω � � ∂ u � � � v k +1 φ d Ω + G ( u k +1 ) φ d Ω = 0 ∀ φ ∈ V 00 φ d Ω − h ∂ t Ω s Ω s Ω f k +1 � J k ∇ v k +1 : F − T ( � u k ) q d Ω = 0 ∀ q ∈ Q h Ω f { A } s := 1 f k := 2 f k − f k − 1 , 2 ( A + A T ) u k ) , � D u v := {∇ vF − 1 ( u ) } s , J k := J ( �

  21. Numerical scheme � u k ) S ( u k +1 , � u k ) : ∇ ψ d Ω + . . . J k F ( � . . . + Ω s ◮ St. Venant–Kirchhoff model (geometrically nonlinear) : S ( u 1 , u 2 ) = λ s tr ( E ( u 1 , u 2 )) I + 2 µ s E ( u 1 , u 2 ); E ( u 1 , u 2 ) = { F ( u 1 ) T F ( u 2 ) − I } s ◮ inc. Blatz–Ko model: S ( u 1 , u 2 ) = µ s ( tr ( { F ( u 1 ) T F ( u 2 ) } s ) I − { F ( u 1 ) T F ( u 2 ) } s ) ◮ inc. Neo-Hookean model: u k ) → F ( u k +1 ) S ( u 1 , u 2 ) = µ s I ; F ( � { A } s := 1 2 ( A + A T )

  22. Numerical scheme The scheme ◮ provides strong coupling on interface ◮ semi-implicit ◮ produces one linear system per time step ◮ second order in time

  23. Numerical scheme The scheme ◮ provides strong coupling on interface ◮ semi-implicit ◮ produces one linear system per time step ◮ second order in time ◮ unconditionally stable (no CFL restriction), proved with assumptions: ◮ 1st order in time ◮ St. Venant–Kirchhoff inc./comp. (experiment: Neo-Hookean inc./comp.) ◮ extension of u to Ω f guarantees J k > 0 ◮ ∆ t is not large A.Lozovskiy, M.Olshanskii, V.Salamatova, Yu.Vassilevski. An unconditionally stable semi-implicit FSI finite element method. Comput.Methods Appl.Mech.Engrg., 297, 2015

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend