a spline dimensional decomposition for high dimensional
play

A Spline Dimensional Decomposition for High-Dimensional Uncertainty - PowerPoint PPT Presentation

INTRODUCTION SDD EXAMPLES CLOSURE A Spline Dimensional Decomposition for High-Dimensional Uncertainty Quantification Sharif Rahman and Ramin Jahanbin The University of Iowa, Iowa City, IA 52242 HDA 2019: 8th Workshop on HDA Zurich,


  1. INTRODUCTION SDD EXAMPLES CLOSURE A Spline Dimensional Decomposition for High-Dimensional Uncertainty Quantification Sharif Rahman and Ramin Jahanbin The University of Iowa, Iowa City, IA 52242 HDA 2019: 8th Workshop on HDA Zurich, Switzerland September 9-13, 2019 Acknowledgment: NSF (CMMI-1607398)

  2. INTRODUCTION SDD EXAMPLES CLOSURE Outline 1 INTRODUCTION 2 SDD 3 EXAMPLES 4 CLOSURE

  3. INTRODUCTION SDD EXAMPLES CLOSURE Uncertainty Quantification Complex System (jet engine) Input X = ( X 1 , . . . , X N ) Output Y = y ( X ) X : (Ω , F ) → ( A N , B N ) Y ∈ L 2 (Ω , F , P ) → → A N ⊆ R N , N ∈ N y ∈ L 2 ( A N , B N , f X d x ) Goals & Objectives � Y l � � Ω Y l d P = � A N y l ( x ) f X ( x ) d x Moments: E := � Probability distribution: P [ Y ≤ y 0 ] := { x : y ( x ) ≤ y 0 } f X ( x ) d x Stochastic design optimization (RDO/RBDO)

  4. INTRODUCTION SDD EXAMPLES CLOSURE UQ Challenges & Methods Challenges (Works at Iowa) High-dimensional random input ( N > 10) Locally prominent (nonsmoothness, discontinuity) responses Statistical dependence among random input Data-driven problems Polynomial Expansion Methods (PCE & PDD) � y p ( X ) = C i Ψ i ( X ) (PCE) 0 ≤ i ≤ p � � C u i u Ψ u y S , p ( X ) = y ∅ + i u ( X u ) (PDD) 0 ≤ i u ≤ p u ∅� = u ⊆{ 1 ,..., N } 1 ≤| u |≤ S Explore spline basis equipped with local support

  5. INTRODUCTION SDD EXAMPLES CLOSURE Assumptions The random vector X := ( X 1 , . . . , X N ) ⊺ : (Ω , F ) → ( A N , B N ) satisfies the following conditions: 1 All component random variables X k , k = 1 , . . . , N , are statistically independent, but not necessarily identical. 2 Each input random variable X k has absolute continuous marginal CDF and continuous marginal PDF. 3 Each input random variable X k is defined on a closed bounded interval [ a k , b k ] ⊂ R , b k > a k , so that all moments exist, i.e. , for l ∈ N 0 , � b k � � � X l X l x l := k ( ω ) d P ( ω ) = k f X k ( x k ) dx k < ∞ . E k Ω a k

  6. INTRODUCTION SDD EXAMPLES CLOSURE Univariate B-Splines (Cox & de Boor, 1972) For a knot sequence ξ k = { a k = ξ k , 1 , . . . , ξ k , n k + p k +1 = b k } , where ξ k , 1 ≤ · · · ≤ ξ k , n k + p k +1 , n k > p k ≥ 0 , the B-splines are i k , p k , ξ k ( x k ) := ( x k − ξ k , i k ) B k + ( ξ k , i k + p k +1 − x k ) B k i k , p k − 1 , ξ k ( x k ) i k +1 , p k − 1 , ξ k ( x k ) B k , ξ k , i k + p k − ξ k , i k ξ k , i k + p k +1 − ξ k , i k +1 1 ≤ k ≤ N , 1 ≤ i k ≤ n k , 1 ≤ p k < ∞ . p 1 = 2, ξ 1 ={ 0,0,0,0.2,0.4,0.6,0.8,1,1,1 } p 1 = 2, λ 1 ={ 0,0,0,0.2,0.4,0.6,0.6,0.8,1,1,1 } 1.0 1.0 B 11,2, ξ 1 B 11,2, λ 1 B 18,2 , λ 1 B 17,2 , ξ 1 B 15,2 , λ 1 B 13,2 , ξ 1 B 14,2 , ξ 1 B 15,2 , ξ 1 B 13,2 , λ 1 0.8 0.8 B 12,2 , ξ 1 B 16,2 , ξ 1 B 12,2 , λ 1 B 14,2 , λ 1 B 16,2 , λ 1 B 17,2 , λ 1 B 1 i 1 ,2 , ξ 1 ( x 1 ) B 1 i 1 ,2 , λ 1 ( x 1 ) 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 x 1 x 1

  7. INTRODUCTION SDD EXAMPLES CLOSURE Univariate ON B-Splines Auxiliary B-Spline Vector � � ⊺ 1 , B k 2 , p k , ξ k ( x k ) , . . . , B k P k ( x k ) := n k , p k , ξ k ( x k ) Spline Moment Matrix k ( X k )] ∈ R n k × n k G k := E [ P k ( X k ) P ⊺ G k → symmetric , positive − definite Whitening Transformation ψ k ( x k ) = Q − 1 k P k ( x k ) , where G k = Q k Q ⊺ k For k = 1 , . . . , N , let S k , p k , ξ k be a space real-valued splines in x k of degree p k and knot sequence ξ k . Then � � ψ k S k , p k , ξ k = span i k , p k , ξ k ( x k ) . i k =1 ,..., n k

  8. INTRODUCTION SDD EXAMPLES CLOSURE Multivariate ON B-Splines Given N ∈ N , let ∅ � = u ⊆ { 1 , . . . , N } . For i u := ( i k 1 , . . . , i k | u | ), p u := ( p k 1 , . . . , p k | u | ), Ξ u := ( ξ k 1 , . . . , ξ k | u | ), the tensor-product ON B-splines in x u = ( x k 1 , . . . , x k | u | ) are � i k , p k , ξ k ( x k ) , i u ∈ ¯ Ψ u ψ k i u , p u , Ξ u ( x u ) = I u , n u . k ∈ u � � ¯ I u , n u := i u = ( i k 1 , . . . , i k | u | ) : 2 ≤ i k l ≤ n k l , l = 1 , . . . , | u | The second-moment properties are � � Ψ u E i u , p u , Ξ u ( X u ) = 0 , � 1 , u = v and i u = j v , � � Ψ u i u , p u , Ξ u ( X u )Ψ v j v , p v , Ξ v ( X v ) = E 0 , otherwise .

  9. INTRODUCTION SDD EXAMPLES CLOSURE Dimensionwise Spline Space Splitting For p = ( p 1 , . . . , p N ) ∈ N N 0 & Ξ = { ξ 1 , . . . , ξ N } , let S p , Ξ be the space of all real-valued splines of degree p in x = ( x 1 , . . . , x N ). Then N � 1 ⊕ ¯ � � S p , Ξ = S k , p k , ξ k k =1 � ¯ S u = 1 ⊕ p u , Ξ u ∅� = u ⊆{ 1 ,..., N } � Ψ u � � = 1 ⊕ span i u , p u , Ξ u ( x u ) I u , n u . i u ∈ ¯ ∅� = u ⊆{ 1 ,..., N } ¯ � ¯ S u Ψ u � � p u , Ξ u = S k , p k , ξ k = span i u , p u , Ξ u ( x u ) I u , n u (zero mean) i u ∈ ¯ k ∈ u � � ¯ ψ k S k , p k , ξ k = span i k , p k , ξ k ( x k ) (zero mean) i k =2 ,..., n k

  10. INTRODUCTION SDD EXAMPLES CLOSURE Spline Dimensional Decomposition Theorem Under Assumptions 1-3, a random variable y ( X ) ∈ L 2 (Ω , F , P ) admits a hierarchical orthogonal expansion in multivariate ON spline basis { Ψ u i u , p u , Ξ u ( X u ) } , referred to as the SDD of � � C u i u , p u , Ξ u Ψ u y p , Ξ ( X ) := y ∅ + i u , p u , Ξ u ( X u ) , i u ∈ ¯ ∅� = u ⊆{ 1 ,..., N } I u , n u � where y ∅ := A N y ( x ) f X ( x ) d x , � C u A N y ( x )Ψ u i u , p u , Ξ u := i u , p u , Ξ u ( x u ) f X ( x ) d x . Moreover, the SDD of y ( X ) is the best approximation, i.e., E [ y ( X ) − y p , Ξ ( X )] 2 = g ∈S p , Ξ E [ y ( X ) − g ( X )] 2 . inf

  11. INTRODUCTION SDD EXAMPLES CLOSURE Error Bound & Convergence Modulus of smoothness ( α k ≥ 1 ) � � L 2 [ a k , b k − α k u k ] , h k ≥ 0 , ω α k ( y ; h k ) L 2 [ a k , b k ] := sup � ∆ α k u k y ( x k ) � 0 ≤ u k ≤ h k � ∆ α ω α ( y ; h ) L 2 [ A N ] := sup u y ( x ) � L 2 [ A N α , u ] , h ≥ 0 0 ≤ u ≤ h L 2 -error � | y ( X ) − y p , Ξ ( X ) | 2 � ≤ C ω p + 1 ( y ; h ) L 2 ( A N ) E � | y ( X ) − y p , Ξ ( X ) | 2 � h → 0 E lim = 0 SDD converges in m.s., in probability and in distribution.

  12. INTRODUCTION SDD EXAMPLES CLOSURE Truncation S -variate, SDD Approximation (Poly. Complexity) � � C u i u , p u , Ξ u Ψ u y S , p , Ξ ( X ) := y ∅ + i u , p u , Ξ u ( X u ) i u ∈ ¯ ∅� = u ⊆{ 1 ,..., N } I u , n u 1 ≤| u |≤ S S s N � N � � � � No . of coeff ., L S , p , Ξ = 1 + ( n k − 1) ≤ n k s s =1 k =1 k =1 ( N = 15, n k = 5, S = 1 or 2: L S , p , Ξ = 61 or 1741 ≪ 5 15 ) Second-Moment Statistics E [ y S , p , Ξ ( X )] = y ∅ = E [ y ( X )] 2 ≤ var [ y ( X )] � � C u var [ y S , p , Ξ ( X )] = i u , p u , Ξ u i u ∈ ¯ ∅� = u ⊆{ 1 ,..., N } I u , n u 1 ≤| u |≤ S

  13. INTRODUCTION SDD EXAMPLES CLOSURE Example 1: A Nonsmooth Function ( N = 2) Defined on the square A 2 = [ − 1 , 1] 2 , consider a nonsmooth function y ( X 1 , X 2 ) = g ( X 1 ) + g ( X 2 ) + 1 5 g ( X 1 ) g ( X 2 ) , X 1 , X 2 ∼ i . i . d . U [ − 1 , 1] , � 1 , − 1 ≤ x i ≤ 0 , g ( x i ) = exp( − 10 x i ) , 0 < x i ≤ 1 .

  14. INTRODUCTION SDD EXAMPLES CLOSURE Example 1: Variance Errors 10 0 10 0 Univariate PDD Bivariate PDD / PCE ● ● ■ ● ● ◆ ■ 10 - 1 Univariate SDD ( p = 1 ) Bivariate SDD ( p = 1 ) ■ ■ ● ■ Univariate SDD ( p = 2 ) Bivariate SDD ( p = 2 ) ■ ● ◆ ● ◆ ● ■ ◆ ◆ ■ ● 10 - 1 10 - 2 ● ◆ ■ ● ● ● e 1, p , e 1, p , h ■ e 2, p , e 2, p , h ■ ● ◆ ■ ● ◆ ● 10 - 3 ■ ■ ■ ◆ ● ■ ● ◆ ◆ ■ 10 - 2 10 - 4 ● ● ◆ ■ ● ◆ ■ ● ◆ 0.00359877 ■ ■ ◆ ■ 10 - 5 ◆ ◆ ◆ ◆ ◆ ◆ ◆ 10 - 6 10 - 3 0 100 200 300 400 500 600 0 10 20 30 40 50 No. of coefficients No. of coefficients

  15. INTRODUCTION SDD EXAMPLES CLOSURE Example 2: A Linear Elasticity Problem ( N = 15) A twisting horseshoe Stochastic PDE (Elliptical) ∇ · σ ( z ; X ) = 0 in D ⊂ R 3 , σ ( z ; X ) · n ( z ; X ) = ¯ t ( z ; X ) on ∂ D t , u ( z ; X ) = ¯ u ( z ; X ) on ∂ D u , ∂ D t ∪ ∂ D u = ∂ D , ∂ D t ∩ ∂ D u = ∅ . Random Input ( N = 15) E ( z ; · ) = C α exp[ α ( z ; · )] , � 1 + ν 2 C α = µ E / E , α ( z ; · ) → homogen . Gaussian RF , Γ α ( z , z ′ ) = σ 2 exp( −|| z − z ′ || / bL ) , 15 √ λ i φ i ( z ) X i . � α ( z ; · ) = i =1 SDD coeffs. est. by dim.-red. integ.

  16. INTRODUCTION SDD EXAMPLES CLOSURE Example 2: St. Dev. of Displacement Field

  17. INTRODUCTION SDD EXAMPLES CLOSURE Example 2: Probability Distribution of a Critical Stress

  18. INTRODUCTION SDD EXAMPLES CLOSURE Conclusion A new ON spline expansion (SDD) is introduced. Comp. effort scales polynomially, not exponentially. SDD converges in m.s. and others weaker modes. A low-order SDD is more accurate than high-order PDD/PCE for nonsmooth functions. Future work Explore nonuniform knot sequences. Study unbounded domains without transformation.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend