p spline anova type interaction models for spatio
play

P -spline ANOVA-type interaction models for spatio-temporal - PowerPoint PPT Presentation

P -spline ANOVA-type interaction models for spatio-temporal smoothing Dae-Jin Lee and Mar a Durb an Universidad Carlos III de Madrid Department of Statistics IWSM Utrecht 2008 D.-J. Lee and M. Durban (UC3M) P -spline


  1. P -spline ANOVA-type interaction models for spatio-temporal smoothing Dae-Jin Lee ⋆ and Mar´ ıa Durb´ an Universidad Carlos III de Madrid Department of Statistics IWSM Utrecht 2008 D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 1 / 26

  2. Outline 1 Motivation 2 Penalized splines for Spatio-Temporal data 3 ANOVA-Type Interaction Models 4 Application to O 3 pollution in Europe 5 Conclusions D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 2 / 26

  3. 1. Motivation • Air pollution • Enviromental policies • Monitoring networks: ◮ European Environmental Agency ( EEA ) ◮ EMEP project (European Monitoring and Evaluation Programme) • Ozone ( O 3 ) is currently one of the air pollutants of most concern in Europe. D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 3 / 26

  4. Monitoring stations across Europe ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● −5 0 5 10 15 20 25 sample of 45 monitoring stations Monitoring station D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 4 / 26

  5. O 3 time series plot for selected locations ◮ Seasonal pattern: Spain Finland 140 France UK 120 100 80 60 40 20 1999 2000 2001 2002 2003 2004 2005 time D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 5 / 26

  6. O 3 level from 01 / 2004 to 12 / 2005 Play animation 20 20 20 40 40 40 60 60 60 80 80 80 100 100 100 120 120 120 D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 6 / 26

  7. 1. Motivation ◮ Spatio-temporal data • Response variable, y ijt ◮ measured over geographical locations , s = ( x i , x j ), with i , j = 1 , .., n ◮ and over time periods , x t , for t = 1 , ...., T • ISSUE: huge amount of data available ◮ e.g. : Environmental data, epidemiologic studies, disease mapping applications, ... • Smoothing techniques: ◮ Study spatial and temporal trends. ◮ Space and time interactions. ◮ “Penalized Splines” ( Eilers and Marx, 1996 ). D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 7 / 26

  8. 2. Penalized splines ◮ “The flexible smoother” • Methodology: ◮ Given the data ( x i , y i ), i = 1 , ..., n . ◮ Fit a sum of local basis functions : f ( x i ) = B θ ◮ Minimize the Penalized Sum of Squares : � y i − f ( x i ) � 2 + Penalty ◮ The Penalty controls the smoothness of the fit. � Smoothing parameter : λ � Apply a discrete penalty over coefficients θ , e.g. in 1 d : P = λ D ′ D where D is a difference matrix acting on θ . D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 8 / 26

  9. 2. Penalized splines ◮ “The flexible smoother” • For array data ( Currie et al., 2006 ): ◮ Generalized Linear Array Methods (GLAM): f ( x 1 , ..., x d ) = B θ ◮ where B is the Kronecker product of d B -splines basis: B = B 1 ⊗ B 2 ⊗ .... ⊗ B d ◮ Efficient Algorithms for smoothing on multidimensional grids ( e.g. mortality data, images, etc...). ◮ Easy representation as a Mixed Model: f ( x 1 , ..., x d ) = X β + Z α D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 9 / 26

  10. 2. Penalized splines ◮ Example of GLAM: • 3 d -case: f ( x 1 , x 2 , x 3 ) = B θ • Basis: B = B 1 ⊗ B 2 ⊗ B 3 ◮ θ can be expressed as a 3 d -array A = { θ } ijk of dim. c 1 × c 2 × c 3 θ (1 , 1 , c 3 ) θ (1 , c 2 , c 3 ) � � � � layer � � � � � � � � 1 ,..., c 3 � � � � � � columns θ (1 , 1 , 1) θ (1 , c 2 , 1) 1 ,..., c 2 θ ( c 1 , 1 , c 3 ) θ ( c 1 , c 2 , c 3 ) rows 1 ,..., c 1 � � � � � � � � � θ ( c 1 , 1 , 1) θ ( c 1 , c 2 , 1) D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 10 / 26

  11. • 3 d Penalty matrix: ◮ Set penalties over the 3 d -array A : P = λ 1 D ′ + λ 2 I c 1 ⊗ D ′ + λ t I c 1 ⊗ I c 2 ⊗ D ′ 1 D 1 ⊗ I c 2 ⊗ I c 3 2 D 2 ⊗ I c 3 t D t � �� � � �� � � �� � row-wise column-wise layer-wise ◮ For spatio-temporal data : f ( longitude , latitude , time ) � �� � Space � Spatial anisotropy ( λ 1 � = λ 2 ), different amount of smoothing for latitude and longitude. � Temporal smoothing ( λ t ) � Space-time interaction . � However spatial data are not over a regular grid . D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 11 / 26

  12. 2. Penalized splines ◮ Scattered data smoothing • For scattered data, Eilers et al. (2006) , propose: ◮ “Row-wise Kronecker” product or Box-Product of B -spline basis. Def. Box-Product: B 1 � B 2 = ( B 1 ⊗ 1 ′ c 2 ) ⊙ ( 1 ′ c 1 ⊗ B 2 ) where ⊙ is the element-wise product. ◮ We propose the use of � for spatial data: � Although spatial data are not over a grid, � the coefficients θ can be expressed in array form. � Choose a moderate number of knots to cover the spatial domain. D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 12 / 26

  13. 2. Penalized splines ◮ Spatio-Temporal data smoothing • For spatio-temporal data , we propose: Spatio-temporal B -splines Basis: B = B s ⊗ B t , of dim. nt × c 1 c 2 c 3 where B s ≡ is the spatial B -spline basis ( B 1 � B 2 ) and B t ≡ is the B -spline basis for time of dim. t × c 3 . • Note that: ◮ GLAM framework ◮ Mixed models ( � ) D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 13 / 26

  14. 2. Penalized splines ◮ Mixed Models representation • Reparameterize the basis B and coefficients θ : B θ = X β + Z α • Currie et al. (2006) , use the Singular Value Decomposition (SVD) over the Penalty P , i.e.: � � � � U ′ 0 q n D ′ D = [ U n : U s ] � U ′ Σ s • The Penalty becomes (blockdiagonal) , F = λ � Σ • Standard mixed model theory ( REML ) D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 14 / 26

  15. 3. ANOVA-Type Interaction Models ◮ Smooth-ANOVA decomposition models • Chen (1993), Gu (2002): ◮ “Smoothing-Spline ANOVA” (SS-ANOVA) . ◮ Interpretation as “main effects” and “interactions” . ◮ Models of type: � y = f ( x 1 ) + f ( x 2 ) + f ( x t ) “Main/additive effects” + f ( x 1 , x 2 ) + f ( x 1 , x t ) + f ( x 2 , x t ) “2-way interactions” + f ( x 1 , x 2 , x t ) “3-way interactions” ◮ PROBLEM: basis dimension ( “curse of dimensionality” ) D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 15 / 26

  16. 3. ANOVA-Type Interaction Models ◮ Smooth-ANOVA decomposition models • We propose ANOVA-Type models: ◮ Computationally efficient methodology � based on low-rank P -splines and GLAM . ◮ For Spatio-temporal smoothing : � Interpretation as: main spatial and temporal effects, • spatial 2 d effects ( anisotropy) and • space-time interaction • ◮ Our approach is based on: � SVD properties and � the mixed model representation D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 16 / 26

  17. • ANOVA-Type Interaction models: ◮ 3 d model: f ( x 1 , x 2 , x t ) with basis: B = B s ⊗ B t and smoothing parameters ( λ 1 , λ 2 , λ t ), can be decomposed as: f ( x 1 ) + f ( x 2 ) + f ( x t ) + f ( x 1 , x 2 ) + ... + f ( x 1 , x 2 , x t ) � Reformulate as a mixed model and expand the basis X and Z . D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 17 / 26

  18. Expand X and Z Basis main effects 2-way interact. 3-way interact. X columns x 1 : x 2 : x 3 ( x 1 , x 2 ) : ( x 2 , x 3 ) : ( x 1 , x 3 ) ( x 1 , x 2 , x 3 ) ≡ Z blocks ′′ ′′ ′′ ≡ Penalty λ 1 , λ 2 , λ t and � Σ 1 , � Σ 2 , � F blockdiag Σ t ≡ D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 18 / 26

  19. ◮ Full-ANOVA-type model: f ( x 1 ) + f ( x 2 ) + f ( x t ) + f ( x 1 , x 2 ) + ... + f ( x 1 , x 2 , x t ) different λ ’s for each smooth f ( · ), with basis B = [ B 1 s ⊗ 1 t : B 2 s ⊗ 1 t : 1 n ⊗ B t : B s ⊗ 1 t : B s ⊗ B t ] � However now, B is NOT full column-rank ( “linear dependency” ) � Model is NOT identifiable ◮ The mixed model representation and the expansion of X and Z , allow us to identify the constraints to impose in order to maintain the identifiability of the model. ◮ In P -splines context: � constraints are applied over regression coefficients θ i , j , k D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 19 / 26

  20. Equivalent as in a 3-way factorial design � main effects: � � � θ (1) θ (2) θ (3) = = = 0 t i j t i j � 2-way interactions: � � � θ (1 , 2) θ (2 , 3) θ (1 , 3) = = = 0 ij it jt i , j i , t j , t � 3-way interactions: � θ (1 , 2 , 3) = 0 ijt i , j , t D.-J. Lee and M. Durban (UC3M) ’ P -spline ANOVA-type models’ IWSM 2008 20 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend