general toeplitz matrices and the takenaka malmquist basis
play

General Toeplitz matrices and the Takenaka-Malmquist basis Adhemar - PowerPoint PPT Presentation

General Toeplitz matrices and the Takenaka-Malmquist basis Adhemar Bultheel 1 and Pierre Carrette 2 August 2003 1 Department Computer Science 2 Shell Oil Company K.U.Leuven, Belgium Houston, Texas USA adhemar.bultheel@cs.kuleuven.ac.be


  1. General Toeplitz matrices and the Takenaka-Malmquist basis Adhemar Bultheel 1 and Pierre Carrette 2 August 2003 1 Department Computer Science 2 Shell Oil Company K.U.Leuven, Belgium Houston, Texas USA adhemar.bultheel@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ ∼ ade/ pierre.carrette@shell.com Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003

  2. 1/16 Takenaka-Malmquist basis Orthogonal rational functions w.r.t. Lebesgue measure on T � n − 1 1 − | α n | 2 z − α k � ϕ n ( z ) = , n ≥ 0 , 1 − α n z 1 − α k z k =0 � �� � B n ( z ) α k ∈ D , α 0 = 0 , ϕ − n = ϕ n (1 /z ) { ϕ n } k ∈ Z complete in L 2 ( T ) iff � (1 − | α k | ) = ∞ ⇒ B n ( z ) → 0 Assumption | α k | ≤ c < 1 , α 0 = 0 . Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003 A. Bultheel

  3. 2/16 Convergence in C q 2 π , q > 2 f ( ω ) := F ( e iω ) ∈ C q 2 π , q > 2 Classical theory = all α k = 0 : denote with a hat. � 2 π 1 ϕ k ( e iω ) = e ikω , ˆ ϕ k ( e iω ) dω ˆ c k = � f, ˆ ϕ k � = f ( ω ) ˆ 2 π 0 Thm: f ( ω ) = � ϕ k ( e iω ) absolutely convergent k ˆ c k ˆ 2 π , q > 2 then � Thm: f ∈ C q | k | <p c k ϕ k ( e iω ) → f ( ω ) , c k = � f, ϕ k � cvg uniform in ω ; rate of cvg is at least 1 /p q − 1 Proof is technical, based on | c 0 | ≤ � f � 1 and | c ± k | ≤ C � f ( q ) � 1 / ( ǫk ) q , k ≥ 1 C and ǫ depend on q , c , k Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003 A. Bultheel

  4. 3/16 Example The function is f ( ω ) = (cos 2 ω + 2) / (4 cos 2 ω + 5) . √ f ( ω ) = Re F ( e iω ) , F ( z ) = ( z 2 + 2) − 1 . Poles at ± i 2 . 1 −3 x 10 14 0.9 12 0.8 10 0.7 8 0.6 6 0.5 4 0.4 2 0.3 0.2 0 1 2 3 4 5 6 0 1 2 3 4 5 6 Figure: left: f and f 2 , random zeros; right: f − f 4 and f − f 6 for poles α k = ( − 1) k 0 . 6 . Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003 A. Bultheel

  5. 4/16 Example convergence The function is f ( ω ) = (cos 2 ω + 2) / (4 cos 2 ω + 5) . √ f ( ω ) = Re F ( e iω ) , F ( z ) = ( z 2 + 2) − 1 . Poles at ± i 2 . 0 0 10 10 −1 −1 10 10 −2 −2 10 10 −3 −3 10 10 −4 −4 10 10 −5 −5 10 10 −6 −6 10 10 −7 −7 10 10 −8 −8 10 10 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 Figure: left: � f − f p � ∞ for (1) α k random, (2) α k = 0 , (3) α k = ( − 1) k 0 . 6 , right: Fourier coefs for case (3) Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003 A. Bultheel

  6. 5/16 Convergence in C 2 π Here convergence need not be uniform ⇒ Ces` aro means. Example: The function is f ( ω ) = | ω − π | . 0.35 0.25 0.3 0.2 0.25 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 1 2 3 4 5 6 0 1 2 3 4 5 6 Figure: left: | f − f n | , n = 2 , 4 , 6 for poles α k = 0 . right: Ces` aro sum for n = 6 . Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003 A. Bultheel

  7. 6/16 Ces` aro sums and Toeplitz matrix � 1 � 2 π � 2 π � p − 1 = 1 ˆ Γ p ( ω ) f ( ω )ˆ ˆ e ikω f ( ω ) e ilω dω Γ ∗ M p ( f ) = p ( ω ) dω 2 π 2 π 0 0 k,l =0 Γ p ( ω ) = [1 , e − iω , . . . , e − i ( p − 1) ω ] ∗ = [ ˆ ˆ ϕ p − 1 ( e iω )] ∗ ϕ 0 ( e iω ) , . . . , ˆ Note p − 1 � ˆ p ( µ )ˆ ϕ k ( e iµ ) = ˆ Γ ∗ ϕ k ( e iσ ) ˆ Γ p ( σ ) = ˆ K p ( µ, σ ) k =0 γ p = ˆ p ( ω )ˆ Γ p ( ω ) = ˆ Γ ∗ ˆ K p ( ω, ω ) = p Recall � 2 π M p ( f ) = 1 ˆ Γ p ( ω ) f ( ω )ˆ ˆ Γ ∗ p ( ω ) dω 2 π 0 Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003 A. Bultheel

  8. 7/16 � Set ˆ G p ( ω ) = ˆ Γ p ( ω ) / ˆ γ p . Then � � 1 − | k | � ˆ p ( ω ) ˆ M p ( f ) ˆ G ∗ ϕ k ( e iω ) G p ( ω ) = ˆ c k ˆ p | k | <p This is Ces` aro sum and ˆ p ( ω ) ˆ M p ( f ) ˆ G ∗ lim G p ( ω ) = f ( ω ) p →∞ ˆ p ( ω ) ˆ M p ( f ) ˆ M p ( g ) ˆ G ∗ lim G p ( ω ) = f ( ω ) g ( ω ) p →∞ Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003 A. Bultheel

  9. 8/16 Generalized Ces` aro sums Assume f ∈ C q 2 π with q > 4 . � 2 π 1 Γ p ( ω ) f i ( ω )Γ ∗ Generalized Toeplitz: M p ( f i ) = p ( ω ) dω 2 π 0 Γ p ( ω ) = [ ϕ 0 ( e iω ) , . . . , ϕ p − 1 ( e iω )] ∗ G p ( ω ) = Γ p ( ω ) γ p ( ω ) = Γ ∗ , p ( ω )Γ p ( ω ) � γ p ( ω ) � T ( f 1 , . . . , f n ) , σ = µ G ∗ p ( σ ) T ( M p ( f 1 ) , . . . , M p ( f n )) G p ( µ ) = 0 , σ � = µ T ( x 1 , . . . , x n ) analytic function in n variables. Rate of convergence as fast as 1 /p if σ = µ or ln p p if σ � = µ . Depends on analysis of the generalized Toeplitz matrix M p ( f ) . Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003 A. Bultheel

  10. 9/16 Spectral properties Classical case � 2 π p − 1 1 M p ( f )) = 1 � λ i ( ˆ lim f ( ω ) dω p 2 π p →∞ 0 i =0 Generalized to f ∈ C q 2 π , q > 4 � 2 π p − 1 1 T ( λ i ( M p ( f ))) = 1 � � � f ( χ − 1 ( ω )) lim T dω p 2 π p →∞ 0 i =0 χ p ( ω ) χ ( ω ) = lim p →∞ , χ p ( ω ) = phase of B p ( ω ) . p Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003 A. Bultheel

  11. 10/16 Example 0.605 0.6 0.595 f ( ω ) = cos 2 ω + 2 0.59 4 cos 2 ω + 5 0.585 0.58 0.575 0.57 2 4 6 8 10 12 14 16 18 20 � 2 π � 2 π p − 1 1 λ k ( M p ( f )) = 1 � χ − 1 ( ω )) dω = lim f (˜ f ( µ )˜ χ ( µ ) dµ p 2 π p →∞ 0 0 k =0 left-hand side for p = 20 is 0.6045, right-hand side integral = 0.6098 Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003 A. Bultheel

  12. 11/16 Quadrature formulas The basic idea in the proofs is to approximate integrals by quadratures. � 2 π M p ( f ) = 1 Γ p ( ω ) f ( ω )Γ ∗ p ( ω ) dω 2 π 0 Use � 2 π p − 1 1 � g ( ω ) dω ≈ H k g ( ω k ) . 2 π 0 k =0 Then M p ( f ) ≈ W p ( f ) = Υ p F p Υ ∗ p F p = diag( f ( ω 0 ) , . . . , f ( ω p − 1 )) , � Υ p = [˜ Γ p ( ω 0 ) , . . . , ˜ ˜ Γ p ( ω p − 1 )] , Γ p ( ω k ) = Γ p ( ω k ) H k Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003 A. Bultheel

  13. 12/16 The quadrature formula is exact in L p · L − p = span { ϕ k ( e iω ) ϕ l ( e iω ) : k, l = 0 , . . . , p − 1 } if ω k are zeros of para-orthogonals ϕ p ( e iω ) − ηB p ( e iω ) ϕ p ( e iω ) , η ∈ T and H k = 1 /γ p ( ω k ) . The classical case = Szeg˝ o quadrature: ω k equidistant, H k = 1 /p . Then Υ p is the (unitary) FFT matrix. M p ( f ) ≈ W p ( f ) = Υ p F p Υ ∗ p EVD of W p ( f ) ≈ M p ( f ) , so f ( ω k ) ≈ f p ( ω k ) approximate the eigenvalues of M p ( f ) . Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003 A. Bultheel

  14. 13/16 The general case = rational Szeg˝ o: ω k ∈ Ω p ( θ ) , H k = 1 /γ p ( ω k ) . Ω p ( θ ) = { ω ∈ [0 , 2 π ) : χ p ( ω ) = θ mod 2 π ; η = e iθ ; B p ( e iω ) = e iχ p ( ω ) } . 3 3 2 2 1 1 0 0 −1 −1 −2 −2 −3 −3 0 1 2 3 4 5 6 0 1 2 3 4 5 6 Figures: χ 10 ( ω ) , left α k = ± 0 . 6 i , right α k = 0 . 9 e ikπ/ 10 Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003 A. Bultheel

  15. 14/16 Spectral approximation 0.3 1 0.9 0.25 0.8 0.2 0.7 0.15 0.6 0.5 0.1 0.4 0.05 2 4 6 8 10 12 14 16 18 20 0 1 2 3 4 5 6 f ( ω ) = (cos 2 ω +2) / (4 cos 2 ω +5) . Left: 2-norm of the vector of differences λ i ( M p ( f )) − f ( ω i ) as a function of p . Right diag(Υ ∗ p M p ( f )Υ p ) (circles) and f ( ω ) . Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003 A. Bultheel

  16. 15/16 Spectral approximation 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 cumulative distribution of f ( ω k ) for ω k ∈ Ω 20 (1) (dashed) and cumulative distribution of λ k ( M 20 ( f )) (solid). Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003 A. Bultheel

  17. 16/16 Reference [1] A. Bultheel, P. Carrette. Algebraic and spectral properties of general Toeplitz matrices. SIAM J. Control Optim. , 41 (2003), pp. 1413–1439. Orthogonal Functions and Related Topics, Røros, Norway, Augist 12-16, 2003 A. Bultheel

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend