takanaka malmquist basis and general toeplitz matrices
play

Takanaka-Malmquist basis and general Toeplitz matrices Adhemar - PowerPoint PPT Presentation

Takanaka-Malmquist basis and general Toeplitz matrices Adhemar Bultheel 1 and Pierre Carrette 2 December 2003 1 Department Computer Science 2 Shell Oil Company K.U.Leuven, Belgium Houston, Texas USA adhemar.bultheel@cs.kuleuven.ac.be


  1. Takanaka-Malmquist basis and general Toeplitz matrices Adhemar Bultheel 1 and Pierre Carrette 2 December 2003 1 Department Computer Science 2 Shell Oil Company K.U.Leuven, Belgium Houston, Texas USA adhemar.bultheel@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ ∼ ade/ pierre.carrette@shell.com CDC, Maui, Hawaii, December, 2003

  2. 1/16 Takenaka-Malmquist basis Orthogonal rational functions w.r.t. Lebesgue measure on T � n − 1 1 − | α n | 2 z − α k � ϕ n ( z ) = , n ≥ 0 , 1 − α n z 1 − α k z k =0 � �� � B n ( z ) α k ∈ D , α 0 = 0 , ϕ − n = ϕ n (1 /z ) { ϕ n } k ∈ Z complete in L 2 ( T ) iff � (1 − | α k | ) = ∞ ⇒ B n ( z ) → 0 Assumption | α k | ≤ c < 1 , α 0 = 0 . CDC, Maui, Hawaii, December, 2003 A. Bultheel

  3. 2/16 Convergence in C q 2 π , q > 2 f ( ω ) := F ( e iω ) ∈ C q 2 π , q > 2 Classical theory = all α k = 0 : denote with a hat. � 2 π 1 ϕ k ( e iω ) = e ikω , ˆ ϕ k ( e iω ) dω ˆ c k = � f, ˆ ϕ k � = f ( ω ) ˆ 2 π 0 Thm: f ( ω ) = � ϕ k ( e iω ) absolutely convergent k ˆ c k ˆ 2 π , q > 2 then � Thm: f ∈ C q | k | <p c k ϕ k ( e iω ) → f ( ω ) , c k = � f, ϕ k � cvg uniform in ω ; rate of cvg is at least 1 /p q − 1 Proof is technical, based on | c 0 | ≤ � f � 1 and | c ± k | ≤ C � f ( q ) � 1 / ( ǫk ) q , k ≥ 1 C and ǫ depend on q , c , k CDC, Maui, Hawaii, December, 2003 A. Bultheel

  4. 3/16 Example The function is f ( ω ) = (cos 2 ω + 2) / (4 cos 2 ω + 5) . √ f ( ω ) = Re F ( e iω ) , F ( z ) = ( z 2 + 2) − 1 . Poles at ± i 2 . 1 −3 x 10 14 0.9 12 0.8 10 0.7 8 0.6 6 0.5 4 0.4 2 0.3 0.2 0 1 2 3 4 5 6 0 1 2 3 4 5 6 Figure: left: f and f 2 , random zeros; right: f − f 4 and f − f 6 for poles α k = ( − 1) k 0 . 6 . CDC, Maui, Hawaii, December, 2003 A. Bultheel

  5. 4/16 Example convergence The function is f ( ω ) = (cos 2 ω + 2) / (4 cos 2 ω + 5) . √ f ( ω ) = Re F ( e iω ) , F ( z ) = ( z 2 + 2) − 1 . Poles at ± i 2 . 0 0 10 10 −1 −1 10 10 −2 −2 10 10 −3 −3 10 10 −4 −4 10 10 −5 −5 10 10 −6 −6 10 10 −7 −7 10 10 −8 −8 10 10 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 Figure: left: � f − f p � ∞ for (1) α k random, (2) α k = 0 , (3) α k = ( − 1) k 0 . 6 , right: Fourier coefs for case (3) CDC, Maui, Hawaii, December, 2003 A. Bultheel

  6. 5/16 Convergence in C 2 π Here convergence need not be uniform ⇒ Ces` aro means. Example: The function is f ( ω ) = | ω − π | . 0.35 0.25 0.3 0.2 0.25 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 1 2 3 4 5 6 0 1 2 3 4 5 6 Figure: left: | f − f n | , n = 2 , 4 , 6 for poles α k = 0 . right: Ces` aro sum for n = 6 . CDC, Maui, Hawaii, December, 2003 A. Bultheel

  7. 6/16 Ces` aro sums and Toeplitz matrix � 1 � 2 π � 2 π � p − 1 = 1 ˆ Γ p ( ω ) f ( ω )ˆ ˆ e ikω f ( ω ) e ilω dω Γ ∗ M p ( f ) = p ( ω ) dω 2 π 2 π 0 0 k,l =0 Γ p ( ω ) = [1 , e − iω , . . . , e − i ( p − 1) ω ] ∗ = [ ˆ ˆ ϕ p − 1 ( e iω )] ∗ ϕ 0 ( e iω ) , . . . , ˆ Note p − 1 � ˆ p ( µ )ˆ ϕ k ( e iµ ) = ˆ Γ ∗ ϕ k ( e iσ ) ˆ Γ p ( σ ) = ˆ K p ( µ, σ ) k =0 γ p = ˆ p ( ω )ˆ Γ p ( ω ) = ˆ Γ ∗ ˆ K p ( ω, ω ) = p Recall � 2 π M p ( f ) = 1 ˆ Γ p ( ω ) f ( ω )ˆ ˆ Γ ∗ p ( ω ) dω 2 π 0 CDC, Maui, Hawaii, December, 2003 A. Bultheel

  8. 7/16 � Set ˆ G p ( ω ) = ˆ Γ p ( ω ) / ˆ γ p . Then � � 1 − | k | � ˆ p ( ω ) ˆ M p ( f ) ˆ G ∗ ϕ k ( e iω ) G p ( ω ) = ˆ c k ˆ p | k | <p This is Ces` aro sum and ˆ p ( ω ) ˆ M p ( f ) ˆ G ∗ lim G p ( ω ) = f ( ω ) p →∞ ˆ p ( ω ) ˆ M p ( f ) ˆ M p ( g ) ˆ G ∗ lim G p ( ω ) = f ( ω ) g ( ω ) p →∞ CDC, Maui, Hawaii, December, 2003 A. Bultheel

  9. 8/16 Generalized Ces` aro sums Assume f ∈ C q 2 π with q > 4 . � 2 π 1 Γ p ( ω ) f i ( ω )Γ ∗ Generalized Toeplitz: M p ( f i ) = p ( ω ) dω 2 π 0 Γ p ( ω ) = [ ϕ 0 ( e iω ) , . . . , ϕ p − 1 ( e iω )] ∗ G p ( ω ) = Γ p ( ω ) γ p ( ω ) = Γ ∗ , p ( ω )Γ p ( ω ) � γ p ( ω ) � T ( f 1 , . . . , f n ) , σ = µ G ∗ p ( σ ) T ( M p ( f 1 ) , . . . , M p ( f n )) G p ( µ ) = 0 , σ � = µ T ( x 1 , . . . , x n ) analytic function in n variables. Rate of convergence as fast as 1 /p if σ = µ or ln p p if σ � = µ . Depends on analysis of the generalized Toeplitz matrix M p ( f ) . CDC, Maui, Hawaii, December, 2003 A. Bultheel

  10. 9/16 Spectral properties Classical case � 2 π p − 1 1 M p ( f )) = 1 � λ i ( ˆ lim f ( ω ) dω p 2 π p →∞ 0 i =0 Generalized to f ∈ C q 2 π , q > 4 � 2 π p − 1 1 T ( λ i ( M p ( f ))) = 1 � � � f ( χ − 1 ( ω )) lim T dω p 2 π p →∞ 0 i =0 χ p ( ω ) χ ( ω ) = lim p →∞ , χ p ( ω ) = phase of B p ( ω ) . p CDC, Maui, Hawaii, December, 2003 A. Bultheel

  11. 10/16 Example 0.605 0.6 0.595 f ( ω ) = cos 2 ω + 2 0.59 4 cos 2 ω + 5 0.585 0.58 0.575 0.57 2 4 6 8 10 12 14 16 18 20 � 2 π � 2 π p − 1 1 λ k ( M p ( f )) = 1 � χ − 1 ( ω )) dω = lim f (˜ f ( µ )˜ χ ( µ ) dµ p 2 π p →∞ 0 0 k =0 left-hand side for p = 20 is 0.6045, right-hand side integral = 0.6098 CDC, Maui, Hawaii, December, 2003 A. Bultheel

  12. 11/16 Quadrature formulas The basic idea in the proofs is to approximate integrals by quadratures. � 2 π M p ( f ) = 1 Γ p ( ω ) f ( ω )Γ ∗ p ( ω ) dω 2 π 0 Use � 2 π p − 1 1 � g ( ω ) dω ≈ H k g ( ω k ) . 2 π 0 k =0 Then M p ( f ) ≈ W p ( f ) = Υ p F p Υ ∗ p F p = diag( f ( ω 0 ) , . . . , f ( ω p − 1 )) , � Υ p = [˜ Γ p ( ω 0 ) , . . . , ˜ ˜ Γ p ( ω p − 1 )] , Γ p ( ω k ) = Γ p ( ω k ) H k CDC, Maui, Hawaii, December, 2003 A. Bultheel

  13. 12/16 The quadrature formula is exact in L p · L − p = span { ϕ k ( e iω ) ϕ l ( e iω ) : k, l = 0 , . . . , p − 1 } if ω k are zeros of para-orthogonals ϕ p ( e iω ) − ηB p ( e iω ) ϕ p ( e iω ) , η ∈ T and H k = 1 /γ p ( ω k ) . The classical case = Szeg˝ o quadrature: ω k equidistant, H k = 1 /p . Then Υ p is the (unitary) FFT matrix. M p ( f ) ≈ W p ( f ) = Υ p F p Υ ∗ p EVD of W p ( f ) ≈ M p ( f ) , so f ( ω k ) ≈ f p ( ω k ) approximate the eigenvalues of M p ( f ) . CDC, Maui, Hawaii, December, 2003 A. Bultheel

  14. 13/16 The general case = rational Szeg˝ o: ω k ∈ Ω p ( θ ) , H k = 1 /γ p ( ω k ) . Ω p ( θ ) = { ω ∈ [0 , 2 π ) : χ p ( ω ) = θ mod 2 π ; η = e iθ ; B p ( e iω ) = e iχ p ( ω ) } . 3 3 2 2 1 1 0 0 −1 −1 −2 −2 −3 −3 0 1 2 3 4 5 6 0 1 2 3 4 5 6 Figures: χ 10 ( ω ) , left α k = ± 0 . 6 i , right α k = 0 . 9 e ikπ/ 10 CDC, Maui, Hawaii, December, 2003 A. Bultheel

  15. 14/16 Spectral approximation 0.3 1 0.9 0.25 0.8 0.2 0.7 0.15 0.6 0.5 0.1 0.4 0.05 2 4 6 8 10 12 14 16 18 20 0 1 2 3 4 5 6 f ( ω ) = (cos 2 ω +2) / (4 cos 2 ω +5) . Left: 2-norm of the vector of differences λ i ( M p ( f )) − f ( ω i ) as a function of p . Right diag(Υ ∗ p M p ( f )Υ p ) (circles) and f ( ω ) . CDC, Maui, Hawaii, December, 2003 A. Bultheel

  16. 15/16 Spectral approximation 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 cumulative distribution of f ( ω k ) for ω k ∈ Ω 20 (1) (dashed) and cumulative distribution of λ k ( M 20 ( f )) (solid). CDC, Maui, Hawaii, December, 2003 A. Bultheel

  17. 16/16 Reference [1] A. Bultheel, P. Carrette. Algebraic and spectral properties of general Toeplitz matrices. SIAM J. Control Optim. , 41 (2003), pp. 1413–1439. CDC, Maui, Hawaii, December, 2003 A. Bultheel

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend