estimating parameters
play

Estimating parameters in spatio- temporal Quermass- in - PowerPoint PPT Presentation

May 9, 2012 Kate rina Sta nkov a Helisov a Estimating parameters Estimating parameters in spatio- temporal Quermass- in spatio-temporal interaction process Quermass-interaction process Kate rina Sta nkov a


  1. May 9, 2012 Kateˇ rina Staˇ nkov´ a Helisov´ a Estimating parameters Estimating parameters in spatio- temporal Quermass- in spatio-temporal interaction process Quermass-interaction process Kateˇ rina Staˇ nkov´ a Helisov´ a Czech Technical University in Prague helisova@math.feld.cvut.cz ◭◭ joint work with Viktor Beneˇ s and Mark´ eta Zikmundov´ a ◮◮ Charles University in Prague ◭ ◮ 9th May 2012 Back Close

  2. May 9, 2012 Outline Kateˇ rina Staˇ nkov´ a Helisov´ a 1. Quermass-interaction process and its extension Estimating parameters in spatio- temporal Quermass- interaction 2. Simulation process 3. Spatio-temporal Quermass-interaction process 4. Maximum likelihood method using MCMC 5. Particle filtering ◭◭ 6. Particle MCMC ◮◮ ◭ ◮ Back Close

  3. May 9, 2012 Outline Kateˇ rina Staˇ nkov´ a Helisov´ a 1. Quermass-interaction process and its extension Estimating parameters in spatio- temporal Quermass- interaction 2. Simulation process 3. Spatio-temporal Quermass-interaction process 4. Maximum likelihood method using MCMC 5. Particle filtering ◭◭ 6. Particle MCMC ◮◮ ◭ ◮ Back Close

  4. May 9, 2012 Notation Kateˇ rina Staˇ nkov´ a Helisov´ a • x = b ( u, r ) ... a disc with centre in u ∈ R 2 and radius r ∈ (0 , ∞ ) Estimating parameters in spatio- temporal • x = { x 1 , . . . , x n } ... finite configuration of n discs Quermass- interaction process • U x ... the union of discs from the configuration x . • Y ... random disc Boolean model (i.e. union of discs without any interactions) with an intensity function of discs centers ρ ( u ) and probability distribution of the discs radii Q • X ... random disc process which is absolutely continuous with re- spect to the process Y ◭◭ ◮◮ ◭ ◮ Back Close

  5. May 9, 2012 Assumptions Kateˇ rina Staˇ nkov´ a Helisov´ a • The intensity function ρ ( u ) = 1 on a bounded set S and ρ ( u ) = 0 Estimating parameters otherwise, i.e. the centers of the reference Boolean model form unit in spatio- temporal Quermass- Poisson process on S . interaction process • For any finite configuration of discs x = { x 1 , . . . , x n } , the proba- bility measure of X with respect to the probability measure of Y is given by a density f θ ( x ) =exp { θ · T ( U x ) } , c θ where ◭◭ – c θ is the normalizing constant, ◮◮ – θ is d -dimensional vector of parameters, ◭ – T = T ( U x ) is a d -dimensional vector of geometrical characteris- ◮ tics of the union U x of the discs from the configuration x . Back Close

  6. May 9, 2012 Quermass-interaction process Kateˇ rina Staˇ nkov´ a Helisov´ a The density is of the form Estimating parameters in spatio- f θ ( x ) = 1 temporal exp { θ 1 A ( U x ) + θ 2 L ( U x ) + θ 3 χ ( U x ) } , Quermass- interaction c θ process where • A = A ( U x ) is the area, • L = L ( U x ) is the perimeter, • χ = χ ( U x ) is the Euler-Poincar´ e characteristic (the number of con- nected components minus the number of holes, i.e. χ ( U x ) = N cc ( U x ) − N h ( U x ) ) ◭◭ ◮◮ ◭ of the union U x . ◮ Back Close

  7. May 9, 2012 Extended Quermass-interaction process Kateˇ rina Staˇ nkov´ a Helisov´ a • Møller, Helisov´ a (2008): Estimating parameters – In the density in spatio- temporal Quermass- interaction f θ ( x ) =exp { θ · T ( U x ) } process , c θ we have T = ( A, L, χ, N h , N bv , N id ) , where N bv = N bv ( U x ) is the number of boundary vertices, N id = N id ( U x ) is the number of isolated discs, of the union U x . – Theory and simulations studied. ◭◭ • Møller, Helisov´ a (2010): ◮◮ ◭ – T = ( A, L, N cc , N h ) . ◮ – Statistical analysis. Back Close

  8. May 9, 2012 Outline Kateˇ rina Staˇ nkov´ a Helisov´ a 1. Quermass-interaction process and its extension Estimating parameters in spatio- temporal Quermass- interaction 2. Simulation process 3. Spatio-temporal Quermass-interaction process 4. Maximum likelihood method using MCMC 5. Particle filtering ◭◭ 6. Particle MCMC ◮◮ ◭ ◮ Back Close

  9. May 9, 2012 Papangelou conditional intensity Kateˇ rina Staˇ nkov´ a Helisov´ a Definition For a finite x ⊂ S × (0 , ∞ ) and y ∈ S × (0 , ∞ ) \ x , Estimating parameters in spatio- Papangelou conditional intensity is defined as temporal Quermass- interaction process λ θ ( x , y ) = f θ ( x ∪ { y } ) /f θ ( x ) . Denoting A ( x , y ) = A ( U x ∪ y ) − A ( U x ) , L ( x , y ) = L ( U x ∪ y ) − L ( U x ) , χ ( x , y ) = χ ( U x ∪ y ) − χ ( U x ) , ◭◭ we get ◮◮ ◭ λ θ ( x , y ) = exp ( θ 1 A ( x , y ) + θ 2 L ( x , y ) + θ 3 χ ( x , y )) . ◮ Back Close

  10. May 9, 2012 MCMC algorithm Kateˇ rina Staˇ nkov´ a Helisov´ a 1. Suppose that in iteration t , we have a configuration x t = { x 1 , . . . , x n } Estimating parameters in spatio- 2. Proposal in iteration t + 1 : temporal Quermass- interaction process (a) with probability 1/2, the proposal is x t ∪ { x n +1 } i. we accept the proposal with probability min { 1; H ( x t , x n +1 ) } and set x t + 1 = x t ∪ { x n +1 } ii. else we set x t + 1 = x t (b) else, the proposal is x t \{ x i } i. we accept the proposal with probability min { 1; 1 /H ( x t \{ x i } , x i ) } and set x t + 1 = x t \{ x i } ◭◭ ii. else x t + 1 = x t ◮◮ where H ( x t , x n +1 ) = λ θ ( x t , x n +1 ) | S | ◭ n +1 and H ( x t \{ x i } , x i ) = λ θ ( x t \{ x i } , x i ) | S | ◮ n Back Close

  11. May 9, 2012 Outline Kateˇ rina Staˇ nkov´ a Helisov´ a 1. Quermass-interaction process and its extension Estimating parameters in spatio- temporal Quermass- interaction 2. Simulation process 3. Spatio-temporal Quermass-interaction process 4. Maximum likelihood method using MCMC 5. Particle filtering ◭◭ 6. Particle MCMC ◮◮ ◭ ◮ Back Close

  12. May 9, 2012 Spatio-temporal Quermass-interaction Kateˇ rina Staˇ nkov´ a Helisov´ a process Estimating parameters in spatio- temporal Quermass- Zikmundov´ a, Staˇ nkov´ a Helisov´ a, Beneˇ s (2012): interaction process f θ ( k ) ( x ) = exp { θ ( k ) · T ( U x ) } , c θ ( k ) where θ ( k ) = θ ( k − 1) + η ( k ) , k = 1 , 2 . . . , T, where θ (0) fixed is given and η ( k ) are iid random vectors with Gaussian distribution N ( a, σ 2 I ) , where a ∈ R d ( d = 3 for basic Quermass- interactio process and d = 4 , 5 , 6 for extended versions), σ 2 > 0 and I ◭◭ ◮◮ is the unit matrix. ◭ ◮ Back Close

  13. May 9, 2012 Temporal dependence Kateˇ rina Staˇ nkov´ a Helisov´ a is given within its simulation algorithm: Estimating parameters 1. Choose a fixed θ (0) in spatio- temporal Quermass- 2. Simulate parameter vectors θ ( k ) , k = 1 , 2 , . . . , T . interaction process 3. Simulate a realization x 0 (using M-H algorithm described above). 4. Simulate realizations x k , k = 1 , 2 . . . , T (M-H alg.) with the pro- posal distribution Prop k of newly added disc at time k given by Prop k = (1 − β ) · Prop ( RP ) + β · Prop ( emp ) β ∈ (0 , 1) , k − 1 , where Prop ( RP ) is a distribution of the reference process, Prop ( emp ) k − 1 is the empirical distribution obtained from the configuration x k − 1 ◭◭ and β is a chosen constant. ◮◮ Remark: Idea is that β describs the power of time dependence so that ( β × 100)% of the added ◭ discs are taken from the previous configuration and the remaining discs are simulated randomly, so ◮ the dependence is stronger when β is bigger. Back Close

  14. May 9, 2012 Example Kateˇ rina Staˇ nkov´ a Helisov´ a Estimating parameters in spatio- temporal Quermass- interaction process ◭◭ ◮◮ A realization of the ( A, L, N cc , N h ) -interaction process in S = [0 , 10] × [0 , 10] with Q the uniform ◭ distribution on the interval [0 . 2 , 0 . 7] , θ (0) = (0 . 5 , − 0 . 25 , − 0 . 5 , 0 . 5) , a = ( − 0 . 1 , 0 . 05 , 0 . 1 , − 0 . 1) , ◮ σ 2 = 0 . 001 and β = 0 . 5 in times k = 0 , 1 , 2 (upper row) and k = 3 , ..., 10 (lower row). Back Close

  15. May 9, 2012 Outline Kateˇ rina Staˇ nkov´ a Helisov´ a 1. Quermass-interaction process and its extension Estimating parameters in spatio- temporal Quermass- interaction 2. Simulation process 3. Spatio-temporal Quermass-interaction process 4. Maximum likelihood method using MCMC 5. Particle filtering ◭◭ 6. Particle MCMC ◮◮ ◭ ◮ Back Close

  16. May 9, 2012 Maximum likelihood method using Kateˇ rina Staˇ nkov´ a Helisov´ a MCMC simulations (MCMC MLE) Estimating parameters in spatio- temporal • Denote f θ ( k ) ( x ) = h θ ( k ) ( x ) /c θ ( k ) (i.e. h θ ( k ) ( x ) = exp { θ ( k ) · T ( U x ) } is Quermass- interaction process the unnormalized density). • For an observation x , the log likelihood function is given by l ( θ ( k ) ) = log h θ ( k ) ( x ) − log c θ ( k ) = θ ( k ) · T ( U x ) − log c θ ( k ) . Problem: c θ ( k ) has no explicit expression. ◭◭ Solution: We maximize the likelihood ratio f θ ( k ) /f θ ( k ) 0 for a fixed vector ◮◮ θ ( k ) instead. ◭ 0 ◮ Back Close

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend