a proposal for a 100 use of bauxite residue
play

A proposal for a 100% use of bauxite residue: The process, results - PowerPoint PPT Presentation

A proposal for a 100% use of bauxite residue: The process, results on the novel Fe-rich binder and how this can take place within the alumina refinery T. Hertel, L. Arnout, A. Peys, L. Pandelaers, B. Blanpain, Y. Pontikes 06/10/2015 The dirty


  1. A proposal for a 100% use of bauxite residue: The process, results on the novel Fe-rich binder and how this can take place within the alumina refinery T. Hertel, L. Arnout, A. Peys, L. Pandelaers, B. Blanpain, Y. Pontikes 06/10/2015

  2. The dirty by-product of the Bayer process… Kolontar, Hungary 2 Stade, Germany 1  production: > 140 Mt of BR/yr  landfilled: > 2.7 Bt 1 https://en.wikipedia.org/ 2 http://i.dailymail.co.uk/

  3. Imagine… 2 Stade, Germany 1 1 https://en.wikipedia.org/ 2 adapted from http://blogs.uni-siegen.de/

  4. Imagine… 2 Stade, Germany 1 100 % use of BR 1 adapted from ttps://en.wikipedia.org/ 2 adapted from http://blogs.uni-siegen.de/

  5. Inorganic polymers (IP) • Al- and Si-rich cementitious amorphous binder • polymerisation of an alkali activated precursor • alternative to OPC http://www.geopolymer.org/

  6. Inorganic polymers (IP) • Al- and Si-rich cementitious amorphous binder • polymerisation of an alkali activated precursor • alternative to OPC http://www.geopolymer.org/

  7. Inorganic polymers (IP) • Al- and Si-rich cementitious amorphous binder • polymerisation of an alkali activated precursor • alternative to OPC http://www.geopolymer.org/

  8. Inorganic polymers (IP) • Al- and Si-rich cementitious amorphous binder • polymerisation of an alkali activated precursor • alternative to OPC The market is already there …

  9. Inorganic polymers (IP) • Fe-rich precursors such as copper, lead, ferro-nickel slags • Partially vitrified • Iron in oxidation state +II Cu slag 1 1 http://www.istgrup.com/

  10. Inspiration by Fe-rich precursors Goal • Partially vitrified • Iron in oxidation state +II BR insoluble in alkaline media Modification into Fe-rich precursor Reduction of iron: Fe +III  Fe +II  Support formation of liquid phase Thermal treatment Phase diagrams

  11. SiO 2 Goal How to increase liquid phase formation? SiO 2 1093 °C CaO FeO 1083 °C FeO Al 2 O 3

  12. SiO 2 Goal How to increase liquid phase formation? SiO 2 1093 °C CaO FeO 1083 °C FeO Al 2 O 3

  13. Aim of present work Development of near zero-waste process for the synthesis of IP BR High temperature partially vitrified processing Fe-rich precursor Synthesis IP

  14. Overview of work Characterisation of Bauxite Residue  XRF  XRD I High temperature  thermodynamic calculations processing  XRD II Synthesis of inorganic polymers  SEM  strength III

  15. Characterisation of BR Oxides wt.% A Gibbsite Z G Goethite C Cancrinite I Ca-Al-Fe-Si-Hydroxide Fe 2 O 3 47.9 Cc Calcite P Perovskite H D Diaspore R Rutile P H Hematite Al 2 O 3 18.9 H Intensity [a.u.] Q Quartz Z Z Zincite CaO 11.0 (Internal standard) Z Cc SiO 2 9.6 Z H Z H H C H D Q I TiO 2 6.5 R I A D C G G Cc I I Cc G I H G Q P Na 2 O 4.0 20 30 40 50 60 °2 ϑ CuK α XRF XRD

  16. High temperature processing FactSage calculation 1100 ° C – Carbon addition 100 Ca(Al,Fe) 6 O 10 90 Ca 2 (Al,Fe) 8 SiO 16 80 Corundum 70 Fe FeO 60 Mellilite wt.% 50 NaAlO 2 Nepheline 40 Perovskite 30 Liquid phase Spinel 20 Gas 10 Ti-Spinel 0 0,4 0,8 1,2 1,6 2,0 2,4 wt.% C

  17. High temperature processing FactSage calculation 1100 ° C – Carbon addition 100 Ca(Al,Fe) 6 O 10 90 Ca 2 (Al,Fe) 8 SiO 16 80 Corundum 70 Fe FeO 60 Mellilite wt.% 50 NaAlO 2 Nepheline 40 Perovskite 30 Liquid phase Spinel 20 Gas 10 Ti-Spinel 0 0,4 0,8 1,2 1,6 2,0 2,4 wt.% C

  18. High temperature processing FactSage calculation 1100 ° C – Carbon + silica addition

  19. High temperature processing 19 FactSage calculation 1100 ° C – Carbon + silica

  20. High temperature processing 20 FactSage calculation 1100 ° C – Carbon + silica 98.4BR_1.6C 88.6BR_1.4C_10S 100BR

  21. High temperature processing Transformation of BR • Induction furnace: 1100 ± 10 ° C – 1 hour • closed iron crucible, gas inlet/outlet • inert atmosphere – Argon 99.995 % Aim: semi-vitrified material  precursor for IP

  22. XRD of precursor Z 100BR m S a ) Z M Z Z,P c H,P Z Q MS f N c Calcium Iron Oxide, Zc M N,f f S M H c G H P H,G G,c H,G G f Iron Calcium Silicate, P H G c,N H G,S S N S G Gehlenite, H Hematite, Z b) 98.4BR_1.6C I Iron, Intensity (a.u.) Z W S W M Magnetite, Z S P G Z,P Z m Maghemite, f N N,f S N Nepheline, Q S PG G G S G,S I P G G G S P Perovskite, Q Quartz, Z c ) S S Spinel, 88.6BR_1.4C_10S M Z W Wüstite, Z Z S Z Zincite (internal standard) G M M Z,P S I N G G M M W M G N NG QN G S P G G,M S N,G S N G 20 30 40 50 60 °2 ϑ CuK α

  23. XRD of precursor Z 100BR m S a ) Z M Z Z,P c H,P Z Q MS f N c Calcium Iron Oxide, Zc M N,f f S M H c G H P H,G G,c H,G G f Iron Calcium Silicate, P H G c,N H G,S S N S G Gehlenite, H Hematite, Z b) 98.4BR_1.6C I Iron, Intensity (a.u.) Z W S W M Magnetite, Z S P G Z,P Z m Maghemite, f N N,f S N Nepheline, Q S PG G G S G,S I P G G G S P Perovskite, Q Quartz, Z c ) S S Spinel, 88.6BR_1.4C_10S M Z W Wüstite, Z Z S Z Zincite (internal standard) G M M Z,P S I N G G M M W M G N NG QN G S P G G,M S N,G S N G 20 30 40 50 60 °2 ϑ CuK α

  24. XRD of precursor Z 100BR m S a ) Z M Z Z,P c H,P Z Q MS f N c Calcium Iron Oxide, Zc M N,f f S M H c G H P H,G G,c H,G G f Iron Calcium Silicate, P H G c,N H G,S S N S G Gehlenite, H Hematite, Z b) 98.4BR_1.6C I Iron, Intensity (a.u.) Z W S W M Magnetite, Z S P G Z,P Z m Maghemite, f N N,f S N Nepheline, Q S PG G G S G,S I P G G G S P Perovskite, Q Quartz, Z c ) S S Spinel, 88.6BR_1.4C_10S M Z W Wüstite, Z Z S Z Zincite (internal standard) G M M Z,P S I N G G M M W M G N NG QN G S P G G,M S N,G S N G 20 30 40 50 60 °2 ϑ CuK α

  25. Synthesis of IP’s K-silicate activation solution, SiO 2 /K 2 O= 1.6, H 2 O/K 2 O = 16 o activation solution/solid ratio = 0.25 o Curing: 60 ° C, 72 h o Steoroscope images 100BR 98.4BR_1.6C 88.6BR_1.4C_10S

  26. Microstructure – SEM (SE) 98.4BR_1.6C 88.6BR_1.4C_10S 100BR denser microstructure less pores, cracks

  27. SEM & strength (3d) of IPs 98.4BR_1.6C 88.6BR_1.4C_10S 100BR Compressive 13.4 ± 0.4 MPa 19.7 ± 1.1 MPa 43.5 ± 0.5 Mpa strength Flexural 4.2 MPa 5.5 MPa 9.8 MPa strength

  28. Process within alumina refinery C BR slurry SiO 2 2 Bayer process mixing firing Fe, Fe 3 O 4 BR cake filter press H 2 O precursor 1 alkaline liquor IP alkalis waterglass 1 http://img.tradeindia.com/ 2 https://encrypted-tbn1.gstatic.com

  29. Conclusion  BR was transformed into suitable Fe-rich precursor material for IP  addition of C, SiO 2  heat treatment - 1100 °C  Insoluble, dense IPs were sucessfully synthesised  dense microstructure  strength exceeding 40 MPa

  30.  Redmud booth To be continued … Thank you for your kind attention!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend