a
play

a AMPLIFIERS FOR SIGNAL CONDITIONING I Input Offset Voltage - PowerPoint PPT Presentation

PRACTICAL DESIGN TECHNIQUES FOR SENSOR SIGNAL CONDITIONING 1 Introduction 2 Bridge Circuits I 3 Amplifiers for Signal Conditioning 4 Strain, Force, Pressure, and Flow Measurements 5 High Impedance Sensors 6 Position and Motion Sensors 7


  1. PRACTICAL DESIGN TECHNIQUES FOR SENSOR SIGNAL CONDITIONING 1 Introduction 2 Bridge Circuits I 3 Amplifiers for Signal Conditioning 4 Strain, Force, Pressure, and Flow Measurements 5 High Impedance Sensors 6 Position and Motion Sensors 7 Temperature Sensors 8 ADCs for Signal Conditioning 9 Smart Sensors 10 Hardware Design Techniques 3.0 a

  2. AMPLIFIERS FOR SIGNAL CONDITIONING I Input Offset Voltage <100µV I Input Offset Voltage Drift <1µV/°C I Input Bias Current <2nA I Input Offset Current <2nA I DC Open Loop Gain >1,000,000 I Unity Gain Bandwidth Product, f u 500kHz - 5MHz I Always Check Open Loop Gain at Signal Frequency! I 1/f (0.1Hz to 10Hz) Noise <1µV p-p <10nV/ √ √ Hz I Wideband Noise I CMR, PSR >100dB I Single Supply Operation I Power Dissipation 3.1 a

  3. MEASURING INPUT OFFSET VOLTAGE R2, 10k Ω Ω +V S R1, 10 Ω Ω ∼ – V OUT = 1 + R2 V OS R1 V OS 10 Ω Ω V OUT = 1001 • V OS + V OUT V OS = –V S 1001 10k Ω Ω For OP177A: V OS = 10µV maximum V OS DRIFT = 0.1µV/°C maximum V OS STABILITY = 0.2µV/month typical 3.2 a

  4. OP177/AD707 OFFSET ADJUSTMENT PINS R1 +V S R2 7 2 − − 1 8 6 3 + 4 − V S − I R1 = 10k Ω Ω , R2 = 2k Ω Ω , OFFSET ADJUST RANGE = 200µV R1 = 20k Ω Ω , I R1 = 0, OFFSET ADJUST RANGE = 3mV 3.3 a

  5. OP AMP TOTAL OFFSET VOLTAGE MODEL GAIN FROM = "A" TO OUTPUT NOISE GAIN = R1 R2 B I B– 1 + R2 ∼ NG = – R1 V OS V OUT R3 A I B+ = – R2 GAIN FROM + "B" TO OUTPUT R1 OFFSET (RTO) = V OS 1 + R2 R2 I I + I B+ • R3 1 + – I B– • R2 R1 R1 R1 • R2 I I OFFSET (RTI ) = V OS + I B+ • R3 – I B– R1 + R2 FOR BIAS CURRENT CANCELLATION: IF I B+ = I B– AND R3 = R1 • R2 OFFSET (RTI) = V OS R1 + R2 3.4 a

  6. INPUT BIAS CURRENT COMPENSATED OP AMPS UNCOMPENSATED COMPENSATED V IN V IN � MATCHED BIAS CURRENTS � � LOW, UNMATCHED BIAS CURRENTS � � SAME SIGN � � CAN HAVE DIFFERENT SIGNS � � 50nA - 10µA � � 0.5nA - 10nA � � 50pA - 5nA (Super Beta) � � HIGHER CURRENT NOISE � � I OFFSET ≈ ≈ I BIAS � I OFFSET << I BIAS � � 3.5 a

  7. CHANGES IN DC OPEN LOOP GAIN CAUSE CLOSED LOOP GAIN UNCERTAINTY I I "IDEAL" CLOSED LOOP GAIN = NOISE GAIN = NG NG I I ACTUAL CLOSED LOOP GAIN = NG 1 + + AVOL NG I I % CLOSED LOOP GAIN ERROR = × 100% 1 + + AVOL I Assume A VOL = 2,000,000, NG = 1,000 %GAIN ERROR ≈ ≈ 0.05% I Assume A VOL Drops to 300,000 %GAIN ERROR ≈ ≈ 0.33% I CLOSED LOOP GAIN UNCERTAINTY = 0.33% – 0.05% = 0.28% 3.6 a

  8. CIRCUIT MEASURES OPEN LOOP GAIN NONLINEARITY V Y 10k Ω Ω 10k Ω Ω V Y = 100001 • V OS NONLINEAR R G 1M Ω Ω +15V ±10V RAMP V OS IDEAL – 10 Ω Ω V X V X ∆ V X ∆ A VOL = ∆ V OS ∆ 10k Ω Ω + R L –V REF –15V +V REF 10 Ω Ω (–10V) 10k Ω (+10V) Ω ≈ NG • OPEN LOOP GAIN OFFSET ADJUST CLOSED LOOP GAIN NONLINEARITY (Multi-Turn Film-Type) NONLINEARITY 1 1 ≈ NG • – A VOL,MIN A VOL,MAX 3.7 a

  9. OP177 GAIN NONLINEARITY R L = 10k Ω Ω V Y 50mV / DIV. ∆ V X ∆ A VOL = ∆ V OS ∆ V OS (0.5µV / DIV.) R L = 2k Ω Ω (RTI) –10V 0 +10V V X = OUTPUT VOLTAGE A VOL (AVERAGE) ≈ ≈ 8 million A VOL,MAX ≈ ≈ 9.1 million, A VOL,MIN ≈ ≈ 5.7million OPEN LOOP GAIN NONLINEARITY ≈ ≈ 0.07ppm CLOSED LOOP GAIN NONLINEARITY ≈ ≈ NG×0.07ppm 3.8 a

  10. INPUT VOLTAGE NOISE FOR OP177/AD707 INPUT VOLTAGE NOISE, nV / √ √ Hz 0.1Hz to 10Hz VOLTAGE NOISE 30 25 1/F CORNER 20 F C = 0.7Hz 200nV 15 v nw (WHITE) 10 5 TIME - 1sec/DIV. 0.1 1 10 100 FREQUENCY (Hz)     FH = =  + + − − I I Vn rms FH FL ( , ) vnw FC ln ( FH FL )    ,   FL   For F L = 0.1Hz, F H = 10Hz, v nw = 10nV/ √ √ Hz, F C = 0.7Hz: I I N N V n,rms = 36nV V n,pp = 6.6 × 36nV = 238nV N N 3.9 a

  11. OP AMP NOISE MODEL V N,R2 R2 GAIN FROM = ∼ "A" TO OUTPUT V N,R1 NOISE GAIN = R1 4kTR2 I N– B 1 + R2 ∼ ∼ NG = – R1 V N CLOSED 4kTR1 LOOP BW V OUT V N,R3 = f CL R3 A I N+ ∼ = – R2 GAIN FROM + "B" TO OUTPUT R1 4kTR3 2 R2 2 + 4kTR3 + 4kTR1 V N R1+R2 I I RTI NOISE = BW • 2 2 2 R1 • R2 R1 2 R3 2 + I N– + I N+ + 4kTR2 R1+R2 R1+R2 I I I I RTO NOISE = NG • RTI NOISE BW = 1.57 f CL 3.10 a

  12. DIFFERENT NOISE SOURCES DOMINATE AT DIFFERENT SOURCE IMPEDANCES EXAMPLE: OP27 VALUES OF R CONTRIBUTION Voltage Noise = 3nV / √ √ Hz FROM Current Noise = 1pA / √ √ Hz 3k Ω Ω 300k Ω Ω 0 T = 25°C AMPLIFIER 3 3 3 VOLTAGE NOISE + AMPLIFIER CURRENT NOISE 0 3 300 OP27 R FLOWING IN R – JOHNSON 0 7 70 NOISE OF R R2 R1 RTI NOISE (nV / √ √ Hz) Neglect R1 and R2 Dominant Noise Source is Highlighted Noise Contribution 3.11 a

  13. DIFFERENT AMPLIFIERS ARE BEST AT DIFFERENT SOURCE IMEPDANCE LEVELS 100 100 R S = 100 Ω Ω R S = 10k Ω Ω 744 741 741 744 OP27, 645 645 OP07 10 10 743 OP07, 743 OP27 1 1 10 100 1k 10k 10 100 1k 10k 10k R S = 1M Ω Ω 741 All Vertical Scales All Horizontal Scales nV / √ √ Hz Hz OP27 1k 744 OP07 743 645 100 10 100 1k 10k 3.12 a

  14. OP177/AD707 COMMON MODE REJECTION (CMR) 160 140 120 CMR 100 CMR = dB 20 log 10 CMRR 80 60 40 20 0 0.1 1 10 100 1k 10k 100k 1M 10M FREQUENCY - Hz 3.13 a

  15. CALCULATING OFFSET ERROR DUE TO COMMON MODE REJECTION RATIO (CMRR) V IN = V CM + V OUT V CM V IN – ERROR (RTI) = = CMRR CMRR R2 V IN V OUT = 1 + R2 R1 V IN + R1 CMRR V IN 1 + R2 ERROR (RTO) = R1 CMRR 3.14 a

  16. OP177/AD707 POWER SUPPLY REJECTION (PSR) 160 140 120 100 PSR PSR = dB 20 log 10 PSRR 80 60 40 20 0 0.01 0.1 1 10 100 1k 10k 100k 1M FREQUENCY - Hz 3.15 a

  17. PROPER LOW AND HIGH-FREQUENCY DECOUPLING TECHNIQUES FOR OP AMPS +V S + C3 LARGE AREA = GROUND PLANE < 10cm # C1 # # LEAD LENGTH = + MINIMUM LOCALIZED HF DECOUPLING, C1, C2: LOW INDUCTANCE – CERAMIC, 0.1µF C2 # # < 10cm SHARED LF C4 + DECOUPLING, C3, C4: ELECTROLYTIC, –V S 10 TO 50µF 3.16 a

  18. PRECISION OP AMP (OP177A) DC ERROR BUDGET MAXIMUM ERROR CONTRIBUTION, + 25 ° C V IN 10k Ω Ω FULLSCALE: V IN =100mV, V OUT = 10V – 100 Ω Ω V OUT V OS 10µV ÷ 100mV 100ppm 100 Ω Ω × 1nA ÷ 100mV I OS 1ppm R L + (100/ 5×10 6 ) × 100mV 2k Ω Ω A VOL 20ppm 99 Ω Ω A VOL 100 × 0.07ppm 7ppm Nonlinearity 0.1Hz to 10Hz 200nV ÷ 100mV 2ppm 1/f Noise SPECS @ +25 ° C: Total V OS = 10µV max ≈ 13 Bits Accurate ≈ 130ppm Unadjusted I OS = 1nA max Error A VOL = 5×10 6 min ≈ ≈ 17 Bits Accurate 9ppm A VOL Nonlinearity = 0.07ppm Resolution Error 0.1Hz to 10Hz Noise = 200nV 3.17 a

  19. SINGLE SUPPLY AMPLIFIERS I Single Supply Offers: N Lower Power N Battery Operated Portable Equipment N Requires Only One Voltage I Design Tradeoffs: N Reduced Signal Swing Increases Sensitivity to Errors Caused by Offset Voltage, Bias Current, Finite Open- Loop Gain, Noise, etc. N Must Usually Share Noisy Digital Supply N Rail-to-Rail Input and Output Needed to Increase Signal Swing N Precision Less than the best Dual Supply Op Amps but not Required for All Applications N Many Op Amps Specified for Single Supply, but do not have Rail-to-Rail Inputs or Outputs 3.18 a

  20. PNP OR N-CHANNEL JFET STAGES ALLOW INPUT SIGNAL TO GO TO THE NEGATIVE RAIL +V S +V S PNPs N-CH JFETs –V S –V S 3.19 a

  21. TRUE RAIL-TO-RAIL INPUT STAGE +V S Q2 Q1 Q3 Q4 –V S 3.20 a

  22. TRADITIONAL OUTPUT STAGES +V S +V S +V S NPN NMOS NPN V OUT V OUT V OUT NPN NMOS PNP –V S –V S –V S 3.21 a

  23. "ALMOST" RAIL-TO-RAIL OUTPUT STRUCTURES +V S +V S PNP PMOS V OUT V OUT NMOS NPN –V S –V S SWINGS LIMITED BY SWINGS LIMITED BY FET "ON" RESISTANCE SATURATION VOLTAGE 3.22 a

  24. PRECISION SINGLE-SUPPLY OP AMP PERFORMANCE CHARACTERISTICS **LISTED IN ORDER OF INCREASING SUPPLY CURRENT I SY /AMP **PART NO. V OS max V OS TC A VOL min NOISE (1kHz) INPUT OUTPUT 70nV/ √ √ Hz 4µA OP181/281/481 1500µV 10µV/°C 5M 0, 4V "R/R" 65nV/ √ √ Hz 15µA OP193/293/493 75µV 0.2µV/°C 200k 0, 4V 5mV, 4V 26nV/ √ √ Hz 50µA OP196/296/496 300µV 1.5µV/°C 150k R/R "R/R" 35nV/ √ √ Hz 400µA OP191/291/491 700µV 1.1µV/°C 25k R/R "R/R" 16nV/ √ √ Hz 800µA *AD820/822/824 400µV 2µV/°C 500k 0, 4V "R/R" 3.9nV/ √ √ Hz 1250µA OP184/284/484 65µV 0.2µV/°C 50k R/R "R/R" 4.7nV/ √ √ Hz 1750µA OP113/213/413 125µV 0.2µV/°C 2M 0, 4V 5mV, 4V *JFET INPUT NOTE: Unless Otherwise Stated Specifications are Typical @ +25°C V S = +5V 3.23 a

  25. OP AMP PROCESS TECHNOLOGY SUMMARY I BIPOLAR (NPN-BASED): This is Where it All Started!! I COMPLEMENTARY BIPOLAR (CB): Rail-to-Rail, Precision, High Speed I BIPOLAR + JFET (BiFET): High Input Impedance, High Speed I COMPLEMENTARY BIPOLAR + JFET (CBFET): High Input Impedance, Rail-to-Rail Output, High Speed I COMPLEMENTARY MOSFET (CMOS): Low Cost, Non-Critical Op Amps I BIPOLAR + CMOS (BiCMOS): Bipolar Input Stage adds Linearity, Low Power, Rail-to-Rail Output I COMPLEMENTARY BIPOLAR + CMOS (CBCMOS): Rail-to-Rail Inputs, Rail-to-Rail Outputs, Good Linearity, Low Power 3.24 a

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend