a nonlinear sigma model connected with stochastic
play

A nonlinear sigma model connected with stochastic processes and - PowerPoint PPT Presentation

Quantissima, Venice 2017 A nonlinear sigma model connected with stochastic processes and quantum diffusion. Margherita DISERTORI joint work with T.Spencer and M.Zirnbauer C. Sabot and P. Tarr` es F. Merkl and S. Rolles Bonn University &


  1. Quantissima, Venice 2017 A nonlinear sigma model connected with stochastic processes and quantum diffusion. Margherita DISERTORI joint work with T.Spencer and M.Zirnbauer C. Sabot and P. Tarr` es F. Merkl and S. Rolles Bonn University & Hausdorff Center for Mathematics

  2. I. A supersymmetric nonlinear sigma model H 2 | 2 (Zirnbauer 1996) originally introduced as a toymodel for quantum diffusion ”spin” model: i ∼ j ∈ Λ e Wij � Si,Sj � � j ∈ Λ e − ǫj � e,Sj � δ ( � S j ,S j � +1) dS Λ dµ ( S )= � Z Λ ◮ Λ ⊂ Z d finite cube, i ∼ j ≡| i − j | =1 ◮ spin S is a (super)vector S =( x,y,z,ξ,η ) , x,y,z even, ξ,η odd elements in a real Grassmann algebra ◮ � S,S ′ � = xx ′ + yy ′ − zz ′ + ξη ′ − ηξ ′ ◮ nonlinear constraint � S,S � = − 1 ⇒ z = √ 1+ x 2 + y 2 +2 ξη ◮ W ij > 0 , � S,S ′ �≤− 1 ⇒ ferromagnetic interaction ◮ ǫ j ≥ 0 mass term, e =(0 , 0 , 1 , 0 , 0) � e,S j � =( z j − 1) ≥ 0 Question: are the spins aligned as Λ → Z d ?

  3. Horospherical coordinates: ( x,y,ξ,η ) → ( u,s, ¯ ψ,ψ ) dµ ( S ) → dµ ( u,s, ¯ ψ,ψ )= j ∈ Λ e − ǫj (cosh uj − 1) e − 1 i ∼ j ∈ Λ e − Wij (cosh( ui − uj ) − 1) � 2 ( s,Ms ) e − ( ¯ ψ,Mψ ) d [ u,s, ¯ � ψ,ψ ] ψ j dψ j e − uj , d [ u,s, ¯ j ∈ Λ du j ds j d ¯ ψ,ψ ]= � i ∼ j W ij e ui + uj ( s i − s j ) 2 + � j ǫ j e uj s 2 ( s,Ms )= � j main features • zero mass: non-compact symmetry group z 2 − x 2 − y 2 − 2 ξη = const • positive mass: compact symmetry subgroup (SUSY) z 2 =1+ x 2 + y 2 +2 ξη = const ⇒ normalized measure Z =1 • for this model a phase transition has been proved in d ≥ 3 [D.-Spencer-Zirnbauer 2010]

  4. II. H 2 | 2 as a random walk in a random environment The setting • finite volume Λ ⊂ Z d , undirected edges E Λ = { e =( j ∼ k ) | j,k ∈ Λ , | j − k | =1 } • discrete time process: ( X n ) n ≥ 0 , X n ∈ Λ • time evolution: n → n +1 : conditional probability ωij ( n ) P ( X n +1 = j | X n = i, ( X k ) k ≤ n )= 1 i ∼ j � k,k ∼ i ωik ( n ) ω ij ( n ) ≥ 0 local conductance at time n ◮ if ω independent of n : Markov chain in the environment ω ◮ if ω time dependent: memory effect Question: is the process recurrent or transient as Λ → Z d ?

  5. ( X n ) n ≥ 0 is a random walk in a random environment (RWRE) if P ω � P 0 , Λ [ · ] = 0Λ [ · ] dρ 0 , Λ ( ω ) P 0 , Λ [ · ] prob. for the process on Λ starting at 0 0 , Λ [ · ] Markov chain in a frozen environment ω = { ω e } e ∈ E Λ P ω dρ 0 , Λ ( ω ) mixing measure H 2 | 2 maps to the mixing measure of two RWRE models ◮ linearly edge-reinforced random walk ERRW (Diaconis 1986) ◮ vertex-reinforced jump process VRJP (Werner 2000, Volkov, Davis) both processes tend to come back to sites already visited in the past (attractive interaction) and are RWRE

  6. P ω ( u,W ) VRJP as RWRE: P VRJP � 0 ,W, Λ [ · ] = [ · ] dρ 0 ,W, Λ ( u ) 0Λ ◮ u ∈ R Λ random vector with prob. law dρ 0 ,W, Λ ( u ) Wij 2 e uj − ui , W ij > 0 ◮ ω ij ( u,W )= connection with H 2 | 2 : dρ 0 ,W, Λ ( u ) = u − marginal of H 2 | 2 with mass at 0: ǫ j = δ j 0 ǫ i ∼ j e − Wij (cosh( ui − uj ) − 1) e − ǫ (cosh u 0 − 1) √ = � det M ( u ) du j du j e − uj (2 π ) − 1 / 2 , du = � ERRW as a RWRE: P ERRW � P VRJP 0 ,a, Λ [ · ] = 0 ,W, Λ [ · ] dγ 0 ,a, Λ ( W ) { W e } e ∈ E independent gamma distributed r.v.: e e − We W ae − 1 dγ 0 ,a, Λ ( W ) ∝ � dW e a e > 0 e

  7. from mixing measure to localization/transience remember: P ω P 0 , Λ [ · ] = � 0Λ [ · ] dρ 0 , Λ ( ω ) Two possible criterions: e 0 a fixed arbitrary edge attached to 0 ◮ positive recurrence: s ] ≤ K e − c | e − e 0 | dρ 0 , Λ ( ω ) [( ω e /ω e 0 ) � unif. in Λ for some 0 <s ≤ 1 , c,K> 0 . s ] ≤ e − c | j − k | in quantum diffusion analog to E H [ | ( E − H ) − 1 jk | ◮ transience ( d ≥ 3) : � dρ 0 , Λ ( ω ) [ ( ω e 0 /ω e ) ] ≤ K unif. in Λ for some K> 0 . ≤ K ǫ = | Λ | − 1 in quantum diffusion � 2 � analog to E H | ( E + iǫ − H ) − 1 jj |

  8. Some results positive recurrence ◮ strong reinf.: ERRW and VRJP for any d ≥ 1 [Merkl-Rolles 2009], [D.-Spencer 2010] [Sabot-Tarr` es 2013] [Angel-Crawford-Kozma 2014] ◮ any reinf.: ERRW and VRJP in d = 1 and strips [Merkl-Rolles 2009], [D.-Spencer 2010] [Sabot-Tarr` es 2013] [D.-Merkl-Rolles 2014] transience ◮ weak reinf.: ERRW and VRJP in d ≥ 3 [D.-Spencer-Zirnbauer 2010], [D.-Sabot-Tarr` es 2015] ⇒ phase transition in d ≥ 3 key tool: Ward identities inherited by the supersymmetric structure of the H 2 | 2 measure

  9. III. H 2 | 2 as a Random Schr¨ odinger operator M ( u ) as a RS matrix: e − u M ( u ) e − u = H β ( u ) =2 β ( u ) − P W Laplacian: P W ij = 1 i ∼ j W ij , diagonal disorder: β ij = 1 i = j β i β j ( u ):= e − 2 uj M jj = ǫ j e − uj + � k ∼ j e uk − uj W jk law of the random potential: [Sabot-Tarr` es-Zeng 2015] 2 ( ǫ,H − 1 − 1 ǫ ) e − � j βj � dν ǫ,W, Λ ( β )= 1 1 β Z 1 Hβ> 0 (det Hβ )1 / 2 e j dβ j Z ǫ,W, Λ =( π 2 ) | V | / 2 e − � e ∈ E We e − � j ǫj

  10. properties of dν ǫ,W, Λ ( β ) : explicit formula for the Laplace transform eǫj (1 − √ 1+ λj ) √ i ∼ j e Wij (1 − √ 1+ λj e − � j λjβj dν ǫ,W, Λ ( β )= � 1+ λk ) � √ 1+ λj � j λ j ≥− 1 Some consequences: [Sabot-Tarr` es-Zeng 2015] [D.,Merkl-Rolles 2016] • the r.v. β j ,β k are independent if | j − k |≥ 2 . • wired boundary conditions ǫ Λ i = � j ∈ Λ c,j ∼ i W ij i.e. zero boundary conditions for u Λ variables: u Λ j =0 ∀ j ∈ Λ c ◮ ∃ a unique prob. measure on R Z d dν ∞ ǫ,W ( β ) with marginals dν ǫ,W, Λ ( β ) (Kolmogorov ext. th.) j = e u Λ ◮ martingale: set ψ Λ E [ ψ Λ ′ |F Λ ] = ψ Λ . j , j ∈ Z d : ∀ Λ ⊂ Λ ′

  11. Some other results • ERRW in d = 2 recurrent for any reinforcement [Merkl-Rolles 2009], [Sabot-Zeng 2015] • infinite hierarchy of martingales with generating function: M Λ ( θ )= e ( u Λ ,θ ) e − 1 2 ( θ,H − 1 θ ∈ ( −∞ , 0] Z d θ ) , Λ [D.,Merkl-Rolles 2016]

  12. Some open problems ◮ d = 2 positive recurrence (exponential localization) is expected for both VRJP and ERRW ◮ d ≥ 3 complete phase diagram? At the moment results only for very small/large reinf ◮ spectral properties for the RS H β

  13. THANK-YOU!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend