a network of scintillometers a network of scintillometers
play

A NETWORK OF SCINTILLOMETERS A NETWORK OF SCINTILLOMETERS FOR - PowerPoint PPT Presentation

A NETWORK OF SCINTILLOMETERS A NETWORK OF SCINTILLOMETERS FOR GROUND-TRUTHING OF SURFACE FLUXES IN NEW MEXICO Jan Kleissl, J. Gomez, S.-H. Hong, W. Defoor, K. Bandy, J.M.H. Hendrickx New Mexico Tech Outline Outline Ground Truthing for


  1. A NETWORK OF SCINTILLOMETERS A NETWORK OF SCINTILLOMETERS FOR GROUND-TRUTHING OF SURFACE FLUXES IN NEW MEXICO Jan Kleissl, J. Gomez, S.-H. Hong, W. Defoor, K. Bandy, J.M.H. Hendrickx New Mexico Tech

  2. Outline Outline • Ground Truthing for SEBAL NM Ground Truthing for SEBAL • Large Aperture Scintillometer (LAS): Principle of Operation Principle of Operation • LASs for Hydrology: The New Mexico T Tech LAS Network h LAS N t k • Preliminary validation results from SEBAL applied to MODIS for July 2006

  3. Energy Balance at the Earth’s surface R net = H + LE + G net R net : net radiation H R sd l: longwave; s: shortwave R lu u: upwelling p g d: downwelling g lu R su LE G: soil / ground heat flux H: sensible heat flux LE: latent heat flux LE: latent heat flux G E Energy balance can be used to estimate LE: b l b d t ti t LE LE = R net – G - H

  4. SEBAL NM ET from Landsat SEBAL: Surface Energy Balance Algorithm for Land SEBAL: Surface Energy Balance Algorithm for Land April 07 2000 June 16 2002 September 14 2000 Rio Grande basin, NM ET (mm/d) 0.0 0.0 < 1.0 < 2.0 < 3.0 < 4.0 ET < 5.0 E < 6.0 6 0 < 7.0 < 8.0 < 9.0 cold pixel: H = 0 ld i l H 0 Hot pixel: ET = 0 � H = R n - G BUT: dT dT Remote sensing algorithms need to be = ρ H c dT r / T T 0 T hot validated using ground-truth measurements p ah cold = f LAI α z ( , ) o o = r f u z z ( , , ) ah * o Hong, Kleissl et al. WRR 2006 [s m -1 ]

  5. The NMT LAS network for SEBAL NM The NMT LAS network for SEBAL • Validate remote sensing sensible heat fluxes estimates using ground measurements – Scintillometer: large constrained fp – Scintillometer: large, constrained fp – EC: smaller variable footprint • 7 scintillometers installed over arid and humid transects in NM • Derive and calibrate ET maps: – Index H to surface temperature Scintillometer – LE = Rn – G – H dT dT EC T 0 T T hot cold

  6. Locations oca o s SNWR Valles Caldera McKenzie Flats San Acacia S A i San Acacia Alfalfa Riparian K Key: Grants G t arid humid humid San Acacia San Acacia Sevilleta Sevilleta irrigated Socorro lava flow EMRTC Magdalena Ridge mountain t i MRO MRO

  7. Sevilleta National Wildlife Refuge Dry grassland Aerial Photos

  8. SNWR Intercomparison Studies Dry grassland � Good agreement for H measured by different LASs and EC

  9. Magdalena Ridge San Acacia Other Scintillometer Mountainous Grassland Riparian Area t transects in New t i N Mexico Valle Grande, VCNP Base of M-mountain Mountainous Grassland Desert

  10. Coming soon … g I-25 S San Acacia Alfalfa A i Alf lf Photograph from Indian Hill facing West El Malpais Lava flows Lava flows

  11. Transect overview Transect overview • Transect lengths 1.8 – 3.4 km • Effective heights 31 - 63 m

  12. Thanks to the Field Crew! Thanks to the Field Crew!

  13. LAS Operation Setup Scintillation Hot surface f

  14. LAS Specs LAS Specs Large Aperture Scintillometer Transmitter Voltage 12 VDC nominal Power 0.5 A maximum Optical wavelength of LED 880 nm (spectral bandwidth at 50% ~ 80nm) Optical power output of LED Maximum 80 mW (IF = 1A), eye safe Beam width ~1 m at 100 m distance Aperture Diameter .152 m Physical dimensions 0.37 m x 0.23 m x 0.32 m Weight 13.5 kg Path Length g 250 m – 4500 m

  15. Scintillometer Data Processing Scintillometer Data Processing Monin-Obukhov similarity Scintillations theory in the surface theory in the surface T,q � n layer, e.g. Structure St t parameter σ σ → → → → 2 2 2 C C C C χ n T Small Aperture (SAS) S ll A t (SAS) L Large Aperture (LAS) A t (LAS) ≤ 250 m pathlength ≤ 5000 m pathlength Heat flux H Inner length scale

  16. Footprint of LAS measurements Footprint Footprint measurements Wind • Model by Hsieh et al. 2000 • Footprint weighting function F t i t i hti f ti for each pixel Wind � peak of weighting � peak of weighting function is usually within 1km x 1km pixel from transect i l f t t center

  17. SEBAL – LAS Intercomparison SEBAL LAS Intercomparison • MODIS images: 1 km x 1 km resolution at MODIS images: 1 km x 1 km resolution at nadir • cloud free images centered over NM • cloud-free images centered over NM – June 18, 1100 MST • 3 transects in operation: – Valles Caldera: mountains, grass – Sevilleta: desert – San Acacia: riparian area

  18. SEBAL NM -MODIS sensible heat flux SEBAL MODIS sensible heat flux Valles Caldera Sevilleta San Acacia

  19. Results Valles C Caldera wind Sevilleta H [W m -2 ] LAS SEBAL San Ac VCNP 222-306 221-278 cacia Sevilleta 328-376 286 San Acacia 215 112-167

  20. Conclusions Conclusions • NMT-LASNet nearing completion NMT LASNet nearing completion � NM ideal for ground truthing • Large Aperture Scintillometers provide reliable Large Aperture Scintillometers provide reliable estimates of H over footprints similar to MODIS pixels • Future Research: – Analyze more images & sites – Include surface temperature, downwelling shortwave radiation measurements – Calibrate SEBAL NM using LASNet Calibrate SEBAL NM using LASNet

  21. Acknowledgements Acknowledgements • NSF-EPSCOR • USGS – WRRI • Field Assistance: Kathy Fleming, Jack Cheney • Flux Tower data: James Cleverly, Jim Thibault Fl T d J Cl l Ji Thib l • Site selection: – San Acacia: Rob Bowman Korky Herkenhoff David – San Acacia: Rob Bowman, Korky Herkenhoff, David Morris – MRO: Dan Klinglesmith – VCNP: Bob Parmenter, Johnny, Albert, & Juglio, VCNP: Bob Parmenter Johnny Albert & Juglio Karen Montgomery (DGPS) – Sevilleta: Renee Robichaud, Mike Friggens – El Malpais: Jeff Albers, Herschel Schulz El M l i J ff Alb H h l S h l

  22. LAS Sensible Heat Fluxes W m LAS Sensible Heat Fluxes W m -2 Sev- VCNP-EC Sev San Valles EC 30 min Acacia A i C ld Caldera 189 no data no data 6/6 1030-1040 336* 226* 219 219 210 210 6/18 1050 1100 6/18 1050-1100 328 213 306±23 6/18 1100-1110 234 212 376 222 222±16 7/16 1120-1130 266* 169* 142 44±4 cloudy * >30% variation in 10 min prior and/or thereafter

  23. Additional variables d= =.02, z o = wdir wspd σ θ L Rsd T_sfc Sev deg m s-1 deg m W m-2 deg C 6/6 1030-1040 343 1.13* 36* -3.3* -- -- villet .03, z U = 6/18 1050-1100 356 1.60 39 -1.57 1008 52.5 CSAT 345 3.04 24 -1.47 1018 52.9 6/18 1100-1110 6/18 1100 1110 = 2.85m a CSAT 7/16 1120-1130 238 1.23* 13* -1.03* 43.2 480* wdir di wspd d σ θ L L R d Rsd deg m s-1 deg m W m-2 6/6 1030-1040 No data Ca V Valles aldera 173 | 151 2.68 | 4.65* 7.9* -1.3 1000 6/18 1050-1100 EC30 | LAS EC30 | LAS 6/18 1100 1110 6/18 1100-1110 144 | 155 | 4.60 | 3.77 | 11 -8.3 1008 EC30 | LAS EC30 | LAS | 205 | 1.76* 22* 7/16 1120-1130 781*

  24. Additional variables d wdir wspd σ θ L Rsd San = 2, z o = deg m s-1 deg m W m-2 6/6 1000-1030 205 1.16 50.9* -9.3* No data CSAT LAS Rnet=630 .52, z U = Acac 6/6 1030-1040 244 1.08 33.3* -8.8 No data CSAT Rnet=705 LAS = 6.53m cia 7 0.86 20 -12.4* 1018 6/18 1050-1100 LAS Rnet=726 CSAT 6/18 1100-1110 20 0.82 31* -7.5* 1030 LAS LAS Rnet=747 R t 747 CSAT 262* 0.75* 12 -1.4* 960 7/16 1120-1130 LAS Rnet = 764

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend