a model of quantum field theory with a fundamental length
play

A Model of Quantum Field Theory with a Fundamental Length S. - PowerPoint PPT Presentation

1 A Model of Quantum Field Theory with a Fundamental Length S. Nagamachi The University of Tokushima 1. Introduction 2. Wightman Axioms 3. Fundamental Length 4. Ultrahyperfunction 5. Model 6. Continuous Limit 2 1 Introduction The


  1. 1 A Model of Quantum Field Theory with a Fundamental Length S. Nagamachi The University of Tokushima 1. Introduction 2. Wightman Axioms 3. Fundamental Length 4. Ultrahyperfunction 5. Model 6. Continuous Limit

  2. 2 1 Introduction The relativistic equation of quantum mechanics called Dirac equation ∂ i � c γ µ ψ ( x ) − Mψ ( x ) = 0 , x 0 = ct, x 1 = x, x 2 = y, x 3 = z ∂x µ contains the constants: c (velocity of light): the fundamental constant in the relativity theory, h = 2 π � (Planck constant): the fundamental constant in quantum mechanics. Dimension: c : [LT − 1 ], h : [ML 2 T − 1 ]. W. Heisenberg thought that the equation must also contain a constant l with dimension [L]. Arbitrary dimensions are expressed by the combination of c , h and l , e.g., [T] = [L]/[LT − 1 ], [M] = [ML 2 T − 1 ]/([LT − 1 ][L])

  3. 3 In 1958, Heisenberg with Pauli introduced the equation ∂ � ψ ( x ) ± l 2 γ µ γ 5 ψ ( x ) ¯ ψ ( x ) γ µ γ 5 ψ ( x ) = 0 , c γ µ (1) ∂x µ which is later called the equation of universe. The constant l has the dimension [L] and is called the fundamental length. D¨ urr, H.-P.; Heisenberg, W.; Mitter, H.; Schlieder, S.; Yamazaki, K. Zur Theorie der Elementarteilchen, Z. Naturf. 14a (1959) 441-485 Heisenberg, W., Introduction to the Unified Field Theory of Elementary Particles, John Wiley & Sons (1966) 1965 Shin’ichiro Tomonaga was awarded the Nobel prize for physics. 1967 Heisenberg visited to Japan for the second time (first time 1929). Heisenberg gave a talk in Kyoto University.

  4. 4 But equation (1) is difficult to solve. So, we consider the following soluble equation having the constant l with the dimension [L]: � cm � 2  � φ ( x ) + φ ( x ) = 0   � (2) . � ∂ � ψ ( x ) = 2 γ µ l 2 ψ ( x ) φ ( x ) ∂φ ( x ) i � c γ µ − M   ∂x µ ∂x µ This equation has no solutions in the axiomatic framework of of Wightman, that is, the field ψ ( x ) is not an operator-valued tempered distribution. But ψ ( x ) is an operator-valued tempered ultrahyperfunction. The equation (2) has a solution in the framework of E. Br¨ uning and S. Nagamachi: Relativistic quantum field theory with a fundamental length, J. Math. Phys. 45 (2004) 2199-2231.

  5. 5 2 Wightman axioms W.I (Relativistic invariance of the state space). There is a physical Hilbert space H in which a unitary representation U ( a, A ) of the Poinar´ e spinor group P 0 acts. W.II (Spectral property). W.III (Existence and uniqueness of the vacuum). There exists in H a unique unit vector Ψ 0 (called the vacuum vector), W.IV (Fields and temperedness). The components φ ( κ ) of the quantum field φ ( κ ) j are operator-valued generalized functions φ ( κ ) ( x ) over the Schwartz space S ( R 4 ) j with common dense domain of definition D to all the operaotrs φ ( κ ) ( f ) . j W.V (Cyclicity of the vacuum). W.VI (Poincar´ e-covariance of the fields).

  6. 6 W.VII (Locality, or microcausality). ( x ) and φ ( κ ′ ) Any two field components φ ( κ ) ( y ) either commute or anti-commute j ℓ under a spacelike separation of x and y : If f and g have space-like separeted supports ( f ) φ ( κ ′ ) ( g )Ψ ∓ φ ( κ ′ ) φ ( κ ) ( g ) φ ( κ ) ( f )Ψ = 0 j j ℓ ℓ for all Ψ ∈ D . We express ( x )Ψ = 0 for ( x − y ) 2 < 0 ( x ) φ ( κ ′ ) ( y )Ψ ∓ φ ( κ ′ ) φ ( κ ) ( y ) φ ( κ ) j ℓ ℓ j [( x − y ) 2 = ( x 0 − y 0 ) 2 − ( x 1 − y 1 ) 2 − ( x 2 − y 2 ) 2 − ( x 3 − y 3 ) 2 ]

  7. 7 3 Fundamental length W.VII (Locality) says that the two events which are space-likely separated are independent. Even if we replace W.VII by a weaker axiom ( x )Ψ = 0 for ( x − y ) 2 < − ℓ 2 < 0 , ( x ) φ ( κ ′ ) ( y )Ψ ∓ φ ( κ ′ ) φ ( κ ) ( y ) φ ( κ ) j j ℓ ℓ (the two events which are separated by ℓ are independent), we can prove W.VI ( x )Ψ = 0 for ( x − y ) 2 < 0 ( x ) φ ( κ ′ ) ( y )Ψ ∓ φ ( κ ′ ) φ ( κ ) ( y ) φ ( κ ) j j ℓ ℓ by using other axioms. It is not easy to weaken the condition of locality if the field φ ( κ ) ( x ) has the localization property. We must introduce generalized functions j which have no localization property.

  8. 8 Let T ( − ℓ, ℓ ) = R + i ( − ℓ, ℓ ) ⊂ C . T ( T ( − ℓ, ℓ )) ∋ f : holomorphic function in T ( − ℓ, ℓ ) . Then for | a | < ℓ , we have � ∞ ∞ ∞ a n ( − a ) n � � n ! δ ( n ) ( x ) f ( x ) dx = f ( n ) (0) n ! −∞ n =0 n =0 � ∞ = f ( − a ) = δ ( x + a ) f ( x ) dx. −∞ (A): ∆ N ( x ) = � N a n n ! δ ( n ) ( x ) converges to δ ( x + a ) = δ − a ( x ) in T ( T ( − ℓ, ℓ )) ′ n =0 as N → ∞ . supp ∆ N = { 0 } , supp δ − a = {− a } . (B): If | a | > ℓ , ∆ N ( x ) does not converge in T ( T ( − ℓ, ℓ )) ′ . (A) and (B) imply: If | a | < ℓ then the distinction between { 0 } and {− a } is not clear in T ( ℓ ) ′ , but if | a | > ℓ then the distinction between { 0 } and {− a } is clear.

  9. 9 4 Ultrahyperfunction Hasumi, M., Tohoku Math. J. 13 (1961) Morimoto, M., Proc. Japan Acad. 51 (1975) T ( A ) = R n + iA ⊂ C n , A ⊂ R n . R n ⊃ K : convex compact T b ( T ( K )) ∋ f : f is continuous on T ( K ) , holomorphic in the interior of T ( K ) and satisfy � f � T ( K ) ,j = sup {| z p f ( z ) | ; z ∈ T ( K ) , | p | ≤ j } < ∞ , j = 0 , 1 , . . . . There is a natural mapping for K 1 ⊂ K 2 T b ( T ( K 2 )) → T b ( T ( K 1 )) .

  10. 10 Let O be a convex open set in R n . We define T ( T ( O )) = lim ← T b ( T ( K )) , K ↑ O. T ( T ( O )) : Fr´ echet space Definition 4.1 tempered ultrahyperfunction is a linear form on the space T ( T ( R n )) . T ( T ( R n )) ′ : space of tempered ultrahyperfunctions In the book of I.M. Gel’fand and G.E. Shilov, Generalized functions Vol. 2, (1968), there are function spaces S 1 ,B and S 1 = lim B →∞ S 1 ,B = K 1 →{ 0 } T b ( T ( K 1 )) , lim 0 ← B S 1 ,B = T b ( T ( K 1 )) = T ( T ( R n )) . but no space lim lim R n ← K 1

  11. 11 5 Model Lagrangian density: Natural unit, c = � = 1 . L ( x ) = L F f ( x ) + L F b ( x ) + L I ( x ) , L F f ( x ) = ¯ ψ ( x )( iγ µ ∂ µ − ˜ m ) ψ ( x ) , L F b ( x ) = 1 2 { ( ∂ µ φ ( x )) 2 − m 2 φ ( x ) 2 } , L I ( x ) = 2 l 2 ( ¯ ψ ( x ) γ µ ψ ( x )) φ ( x ) ∂ µ φ ( x ) . The field equations  ( � + m 2 ) φ ( x ) = 0  � � ∂ ψ ( x ) = 2 γ µ l 2 ψ ( x ) φ ( x ) ∂φ ( x ) iγ µ − ˜ m ∂x µ ∂x µ 

  12. 12 Quantization – Path integral. Two point function, formally �� � � ¯ d D ( ψ, ¯ ψ α ( x 1 ) ψ β ( x 2 ) exp i R 4 L I ( x ) dx ψ ) d G ( φ ) � − 1 �� �� � d D ( ψ, ¯ × exp i R 4 L I ( x ) dx ψ ) d G ( φ ) , �� � � d G ( φ ) = exp i R 4 L F b ( x ) dx dφ ( x ) x ∈ R 4 4 �� � � d D ( ψ, ¯ ψ α ( x ) ¯ � ψ ) = exp i R 4 L F f ( x ) dx ψ α ( x ) . α =1 x ∈ R 4 Lattice approximation. M, N : positive integers L = MN . Γ = { t = j ∆; j ∈ Z , − L < j ≤ L, ∆ = √ π/M } = ∆ Z / (2 √ πN ) .

  13. 13 Linear operator −△ + m 2 on R Γ 4 = R 4 · 2 L (difference operator on the lattice Γ 4 ) 3 −△ + m 2 : R Γ 4 ∋ Φ( x ) → − Φ( x + e µ ) + Φ( x − e µ ) − 2Φ( x ) + m 2 Φ( x ) ∈ R Γ 4 . � ∆ 2 µ =0 Gaussian measure on R 4 · 2 L : � 3  1 Φ( y + e µ ) + Φ( y − e µ ) − 2Φ( y )  � � dG (Φ) = C exp ∆ 2 2  µ =0 y ∈ Γ 4 ∆ 4 � � − m 2 Φ( y ) � d Φ( y ) , y ∈ Γ 4 � dG (Φ) = 1 . The exponent: Euclideanized ( x 0 → C : normalization constant − iy 0 , x → y ) discretization of Lagrangian i � L F b ( x ) dx .

  14. 14 The covariance � Φ( y 1 )Φ( y 2 ) dG (Φ) = 2( −△ + m ) − 1 ( y 1 , y 2 ) = 2 S m ( y 1 − y 2 ) � 3 � − 1 (2 − 2 cos p µ ∆) / ∆ 2 + m 2 S m ( y 1 − y 2 ) = (2 π ) − 4 � � e ip ( y 1 − y 2 ) η 4 , p ∈ ˜ µ =0 Γ 4 Γ = { s = jη ; j ∈ Z , − L < j ≤ L, η = √ π/N } = η Z / (2 √ πM ) . ˜ Nonstandard analysis: S m ( y 1 − y 2 ) → S m ( y 1 − y 2 ) , M, N → ∞ . Schwinger function of neutral scalar field of mass m : � p 2 + m 2 � − 1 d 4 p. S m ( y 1 − y 2 ) = (2 π ) − 4 R 4 e ip ( y 1 − y 2 ) �

  15. 15 Measure dD (Ψ 1 , Ψ 2 ) on the Grassmann algebra generated by { Ψ 1 α ( y ) , Ψ 2 α ( y ); α = 1 , . . . , 4 , y ∈ Γ 4 } : � 3   �   dD (Ψ 1 , Ψ 2 ) = C ′ exp Ψ 2 T ( y ) � � γ E Ψ 1 ( y )∆ 4  − µ ∇ µ + ˜ m  µ =0 y ∈ Γ 4 4 � � d Ψ 1 α ( y ) d Ψ 2 × α ( y ) , α =1 y ∈ Γ 4 Ψ 1 = (Ψ 1 4 ) T , Ψ 2 = (Ψ 2 4 ) T , 1 , . . . , Ψ 1 1 , . . . , Ψ 2 � σ 0 � � � 0 0 − iσ j γ E , γ E 0 = γ 0 = j = − iγ j = , j = 1 , 2 , 3 , 0 − σ 0 iσ j 0 � 1 � 0 � 0 � 1 � � � � 0 1 − i 0 σ 0 = , σ 1 = , σ 2 = , σ 3 = , 0 1 1 0 i 0 0 − 1

  16. 16 � ∇ + Ψ k ( y ) = (Ψ k ( y + e µ ) − Ψ k ( y )) / ∆ if k = 1 , 2 , ∇ µ Ψ k = ∇ − Ψ k ( y ) = (Ψ k ( y ) − Ψ k ( y − e µ )) / ∆ if k = 3 , 4 . Avoid doubling problem. 3 − L I ( y ) = Ψ 2 T ( y ) e − il 2 Φ( y ) 2 � γ E µ µ =0 × [ P + Ψ 1 ( y + e µ ) { e − il 2 Φ( y + e µ ) 2 − e − il 2 Φ( y ) 2 } / ∆ + P − Ψ 1 ( y − e µ ) { e − il 2 Φ( y ) 2 − e − il 2 Φ( y − e µ ) 2 } / ∆] , P ± = (1 ± γ E 0 ) / 2 . L I ( y ) → iL I ( x ) : differences → derivatives, ( y 0 → ix 0 , y → x ).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend