a fictitious domain approach for the finite element
play

A fictitious domain approach for the finite element discretization - PowerPoint PPT Presentation

A fictitious domain approach for the finite element discretization of FSI Lucia Gastaldi Universit` a di Brescia http://lucia-gastaldi.unibs.it MWNDEA 2020 Fluid-Structure Interaction FSI with Lagrange multiplier Computational aspects Time


  1. A fictitious domain approach for the finite element discretization of FSI Lucia Gastaldi Universit` a di Brescia http://lucia-gastaldi.unibs.it MWNDEA 2020

  2. Fluid-Structure Interaction FSI with Lagrange multiplier Computational aspects Time marching schemes Outline Fluid-Structure Interaction 1 FSI with Lagrange multiplier 2 Computational aspects 3 Time marching schemes 4 Main collaborators : Daniele Boffi, Luca Heltai, Nicola Cavallini, Sebastian Wolf, Miguel A. Fern´ andez, Michele Annese, Simone Scacchi page 2

  3. Outline 1 Fluid-Structure Interaction FSI with Lagrange multiplier 2 Computational aspects 3 Time marching schemes 4

  4. Fluid-Structure Interaction FSI with Lagrange multiplier Computational aspects Time marching schemes Fluid-structure interaction Ω ⊂ R d , d = 2 , 3 x Eulerian variable in Ω B t B t deformable structure domain B t ⊂ R m , m = d , d − 1 Ω s Lagrangian variable in B X X ( · , t ) : B → B t position of the solid F = ∂ X ∂ s deformation gradient B page 1

  5. Fluid-Structure Interaction FSI with Lagrange multiplier Computational aspects Time marching schemes Fluid-structure interaction Ω ⊂ R d , d = 2 , 3 x Eulerian variable in Ω B t B t deformable structure domain B t ⊂ R m , m = d , d − 1 Ω s Lagrangian variable in B X X ( · , t ) : B → B t position of the solid F = ∂ X ∂ s deformation gradient B u ( x , t ) material velocity u ( x , t ) = ∂ X ∂ t ( s , t ) where x = X ( s , t ) page 1

  6. Fluid-Structure Interaction FSI with Lagrange multiplier Computational aspects Time marching schemes Numerical approaches to FSI Boundary fitted approaches The fluid problem is solved on a mesh that deforms around a Lagrangian structure mesh, using arbitary Lagrangian–Eulerian (ALE) coordinate system. In case of large deformation the boundary fitted fluid mesh can become severely distorted. Non boundary fitted approaches A separate structural discretization is superimposed onto a background fluid mesh ◮ fictitious domain < Glowinski-Pan-P´ eriaux ’94, Yu ’05 > ◮ level set method < Chang-Hou-Merriman-Osher ’96 > ◮ immersed boundary method (IBM) < Peskin ’02 > ◮ Nitsche-XFEM method < Burman-Fern´ andez ’14, Alauzet-Fabr` eges-Fern´ andez-Landajuela ’16 > ◮ immersogeometric FSI (thin structures) < Kamensky-Hsu-Schillinger-Evans-Aggarwal-Bazilevs-Sacks-Hughes ’15 > ◮ divergence conforming B-splines < Casquero-Zhang-Bona-Casas-Dalcin-Gomez ’18 > page 2

  7. Fluid-Structure Interaction FSI with Lagrange multiplier Computational aspects Time marching schemes Numerical approaches to FSI Boundary fitted approaches The fluid problem is solved on a mesh that deforms around a Lagrangian structure mesh, using arbitary Lagrangian–Eulerian (ALE) coordinate system. In case of large deformation the boundary fitted fluid mesh can become severely distorted. Non boundary fitted approaches A separate structural discretization is superimposed onto a background fluid mesh ◮ fictitious domain < Glowinski-Pan-P´ eriaux ’94, Yu ’05 > ◮ level set method < Chang-Hou-Merriman-Osher ’96 > ◮ immersed boundary method (IBM) < Peskin ’02 > ◮ Nitsche-XFEM method < Burman-Fern´ andez ’14, Alauzet-Fabr` eges-Fern´ andez-Landajuela ’16 > ◮ immersogeometric FSI (thin structures) < Kamensky-Hsu-Schillinger-Evans-Aggarwal-Bazilevs-Sacks-Hughes ’15 > ◮ divergence conforming B-splines < Casquero-Zhang-Bona-Casas-Dalcin-Gomez ’18 > Our approach originates from the immersed boundary method IBM and moved towards a fictitious domain method FDM. page 2

  8. Fluid-Structure Interaction FSI with Lagrange multiplier Computational aspects Time marching schemes FSI problem (thick incompressible solid) � ∂ u f � Ω ρ f ∂ t + u f · ∇ u f = div σ f in Ω \ B t Ω f t div u f = 0 in Ω \ B t B t ∂ 2 X s F −⊤ + P ( F )) ∂ t 2 = div s ( | F | σ f ρ s in B div s u s = 0 in B ∂ B t u f = ∂ X on ∂ B t ∂ t σ f n f = − ( σ f s + | F | − 1 PF ⊤ ) n s on ∂ B t u s = ∂ X σ f σ f = − p f I + ν f ∇ sym u f s = − p s I + ν s ∇ sym u s ∂ t s F −⊤ and P ( F ) Piola–Kirchhoff stress tensor such that P = | F | σ e P ( F ) = ∂ W ∂ F where W is the potential energy density + initial and boundary conditions page 3

  9. Outline 1 Fluid-Structure Interaction FSI with Lagrange multiplier 2 Computational aspects 3 Time marching schemes 4

  10. Fluid-Structure Interaction FSI with Lagrange multiplier Computational aspects Time marching schemes Fictitious domain approach < Boffi–Cavallini–G. ’15 > ◮ Fluid velocity and pressure are extended into the solid domain � u f � p f in Ω \ B t in Ω \ B t u = p = u s in B t in B t p s page 4

  11. Fluid-Structure Interaction FSI with Lagrange multiplier Computational aspects Time marching schemes Fictitious domain approach < Boffi–Cavallini–G. ’15 > ◮ Fluid velocity and pressure are extended into the solid domain � u f � p f in Ω \ B t in Ω \ B t u = p = u s in B t in B t p s ◮ Body motion u ( x , t ) = ∂ X ∂ t ( s , t ) for x = X ( s , t ) page 4

  12. Fluid-Structure Interaction FSI with Lagrange multiplier Computational aspects Time marching schemes Fictitious domain approach < Boffi–Cavallini–G. ’15 > ◮ Fluid velocity and pressure are extended into the solid domain � u f � p f in Ω \ B t in Ω \ B t u = p = u s in B t in B t p s ◮ Body motion u ( x , t ) = ∂ X ∂ t ( s , t ) for x = X ( s , t ) ◮ We introduce two functional spaces Λ and Z and a bilinear form c : Λ × Z → R such that c ( µ, z ) = 0 ∀ µ ∈ Λ ⇒ z = 0 page 4

  13. Fluid-Structure Interaction FSI with Lagrange multiplier Computational aspects Time marching schemes Notation: � ν f in Ω \ B t a ( u , v ) = ( ν ∇ sym u , ∇ sym v ) with ν = ν s in B t b ( u , v , w ) = ρ f 2 (( u · ∇ v , w ) − ( u · ∇ w , v )) � � ( u , v ) = uv d x , ( X , z ) B = Xz d s Ω B δ ρ = ρ s − ρ f page 5

  14. Fluid-Structure Interaction FSI with Lagrange multiplier Computational aspects Time marching schemes Variational form with Lagrange multiplier Problem For t ∈ [0 , T ], find u ( t ) ∈ H 1 0 (Ω) d , p ( t ) ∈ L 2 0 (Ω), X ( t ) ∈ W 1 , ∞ ( B ) d , and λ ( t ) ∈ Λ such that ρ d dt ( u ( t ) , v ) + a ( u ( t ) , v ) + b ( u ( t ) , u ( t ) , v ) ∀ v ∈ H 1 0 (Ω) d − ( div v , p ( t )) + c ( λ ( t ) , v ( X ( · , t ))) = 0 ∀ q ∈ L 2 ( div u ( t ) , q ) = 0 0 (Ω) � ∂ 2 X � ∀ z ∈ H 1 ( B ) d δ ρ ∂ t 2 ( t ) , z + ( P ( F ( t )) , ∇ s z ) B − c ( λ ( t ) , z ) = 0 B � µ , u ( X ( · , t ) , t ) − ∂ X ( t ) � c = 0 ∀ µ ∈ Λ ∂ t page 6

  15. Fluid-Structure Interaction FSI with Lagrange multiplier Computational aspects Time marching schemes Definition of c The fact that X ∈ W 1 , ∞ ( B ) d implies v ( X ( · )) ∈ H 1 ( B ) d Case 1 Z = H 1 ( B ) d , Λ dual space of H 1 ( B ) d , �· , ·� B duality pairing λ ∈ Λ = ( H 1 ( B ) d ) ′ , z ∈ H 1 ( B ) d c ( λ , z ) = � λ , z � B Case 2 Z = H 1 ( B ) d , Λ = H 1 ( B ) d � λ ∈ Λ , z ∈ H 1 ( B ) d c ( λ , z ) = ( ∇ s λ · ∇ s z + λ · z ) ds B page 7

  16. Fluid-Structure Interaction FSI with Lagrange multiplier Computational aspects Time marching schemes Energy estimate Stability estimate If ρ s > ρ f , then the following bound holds true 2 � � ρ f d 0 + d dt E ( X ( t )) + 1 d ∂ X dt || u ( t ) || 2 0 + µ || ∇ u ( t ) || 2 � � 2 δ ρ = 0 � � 2 ∂ t dt � � B � where E ( X ( t )) = W ( F ( s , t )) ds B Remark Similar bound holds true if the condition ρ s > ρ f is not satisfied. page 8

  17. Fluid-Structure Interaction FSI with Lagrange multiplier Computational aspects Time marching schemes Time advancing scheme - Backward Euler BE Problem 0 (Ω) d and X 0 ∈ W 1 , ∞ ( B ) d , for n = 1 , . . . , N , find Given u 0 ∈ H 1 0 (Ω), X n ∈ W 1 , ∞ ( B ) d , and λ n ∈ Λ , such that 0 (Ω) d × L 2 ( u n , p n ) ∈ H 1 � u n +1 − u n � + a ( u n +1 , v ) + b ( u n +1 , u n +1 , v ) ρ f , v ∆ t − ( div v , p n +1 ) + c ( λ n +1 , v ( X n +1 ( · ))) = 0 ∀ v ∈ H 1 0 (Ω) d ( div u n +1 , q ) = 0 ∀ q ∈ L 2 0 (Ω) � X n +1 − 2 X n + X n − 1 � + ( P ( F n +1 ) , ∇ s z ) B δ ρ , z ∆ t 2 B − c ( λ n +1 , z ) = 0 ∀ z ∈ H 1 ( B ) d µ , u n +1 ( X n +1 ( · )) − X n +1 − X n � � c = 0 ∀ µ ∈ Λ ∆ t page 9

  18. Fluid-Structure Interaction FSI with Lagrange multiplier Computational aspects Time marching schemes Time advancing scheme - Mofified backward Euler MBE Problem 0 (Ω) d and X 0 ∈ W 1 , ∞ ( B ) d , for n = 1 , . . . , N , find Given u 0 ∈ H 1 0 (Ω), X n ∈ W 1 , ∞ ( B ) d , and λ n ∈ Λ , such that 0 (Ω) d × L 2 ( u n , p n ) ∈ H 1 � u n +1 − u n � + a ( u n +1 , v ) + b ( u n , u n +1 , v ) ρ f , v ∆ t − ( div v , p n +1 ) + c ( λ n +1 , v ( X n ( · ))) = 0 ∀ v ∈ H 1 0 (Ω) d ( div u n +1 , q ) = 0 ∀ q ∈ L 2 0 (Ω) � X n +1 − 2 X n + X n − 1 � + ( P ( F n +1 ) , ∇ s z ) B δ ρ , z ∆ t 2 B − c ( λ n +1 , z ) = 0 ∀ z ∈ H 1 ( B ) d µ , u n +1 ( X n ( · )) − X n +1 − X n � � c = 0 ∀ µ ∈ Λ ∆ t page 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend