assessment of fictitious domain method for linear
play

Assessment of Fictitious Domain method for Linear Stability Analysis - PowerPoint PPT Presentation

Assessment of Fictitious Domain method for Linear Stability Analysis of Fluid-Structure systems J. Moulin, J-L. Pfister, M.Carini, O.Marquet Office National dEtudes et de Recherches Arospatiales, Dpartement Arodynamique Fondamentale et


  1. Assessment of Fictitious Domain method for Linear Stability Analysis of Fluid-Structure systems J. Moulin, J-L. Pfister, M.Carini, O.Marquet Office National d’Etudes et de Recherches Aérospatiales, Département Aérodynamique Fondamentale et Expérimentale Funded by ERC Starting Grant ERCOFTAC-SIG33, Siena, 19-21 June 2017

  2. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion Linear Stability Analysis & FSI Solid modelling complexity Fluttering flag (C.Eloy, JFM 2008) Potential flow + 1D elastic solid Spring-Mounted airfoil Zig-Zag mode (J.Tchoufag, JFM 2014) Quasi-Steady theory + damped oscillator Navier-Stokes + rigid-solid Fluid modelling complexity 2/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

  3. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion Linear Stability Analysis & FSI Solid modelling complexity Fluttering flag (C.Eloy, JFM 2008) Potential flow + 1D elastic solid Spring-Mounted airfoil Zig-Zag mode (J.Tchoufag, JFM 2014) Quasi-Steady theory + damped oscillator Navier-Stokes + rigid-solid Fluid modelling complexity 2/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

  4. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion Linear Stability Analysis & FSI Solid modelling complexity Fluttering flag (C.Eloy, JFM 2008) Potential flow + 1D elastic solid Spring-Mounted airfoil Zig-Zag mode (J.Tchoufag, JFM 2014) Quasi-Steady theory + damped oscillator Navier-Stokes + rigid-solid Fluid modelling complexity Objective Assess the use of Fictitious Domain approach for Stability Analysis of FSI systems 2/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

  5. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion Plan Introduction 1 Conforming vs. Non-Conforming 2 App.1 : VIV on rigid cylinder 3 App. 2 : cylinder with flexible appendice 4 Conclusion 5 3/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

  6. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion Numerical frameworks for FSI Description of the separate problems Ω s ( t ) u Fluid : Eulerian description in domain Ω f ( t ) Solid : Lagrangian description ξ s in domain Ω s Ω f ( t ) 0 4/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

  7. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion Numerical frameworks for FSI Description of the separate problems Ω s ( t ) u Fluid : Eulerian description in domain Ω f ( t ) Solid : Lagrangian description ξ s in domain Ω s Ω f ( t ) 0 Description of coupled FSI problems Conforming methods Non-Conforming methods Arbitrary Lagrangian-Eulerian method (ALE) Fictitious Domain method (FD) (J.Donea, Enc. Comp. Mech. 2004) (R.Glowinsky, Int. J. Numer. Meth. Fluid 1999) Artificial unknowns : mesh displacement in Artificial unknowns : fluid velocity in the ➥ ➥ the fluid region solid region Added equation : fluid mesh movement Added equation : constraint equation to ➥ ➥ equation impose the solid presence 5/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

  8. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion Numerical frameworks for FSI Description of the separate problems Ω s ( t ) u Fluid : Eulerian description in domain Ω f ( t ) Solid : Lagrangian description ξ s in domain Ω s Ω f ( t ) 0 Description of coupled FSI problems Conforming methods (Ref.) Non-Conforming methods Arbitrary Lagrangian-Eulerian method (ALE) Fictitious Domain method (FD) (J.Donea, Enc. Comp. Mech. 2004) (R.Glowinsky, Int. J. Numer. Meth. Fluid 1999) Artificial unknowns : mesh displacement in Artificial unknowns : fluid velocity in the ➥ ➥ the fluid region solid region Added equation : fluid mesh movement Added equation : constraint equation to ➥ ➥ equation impose the solid presence 6/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

  9. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion An illustrative example Heat equation in a moving domain Ω f ( ξ s ( t )) : ∆ T = 0 in Ω f ( ξ s ( t )) T = 1 ξ s ( t ) T = 0 T = 1 T = 1 Ω f T = 1 7/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

  10. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion An illustrative example Heat equation in a moving domain Ω f ( ξ s ( t )) : ∆ T = 0 in Ω f ( ξ s ( t )) T = 1 ξ s ( t ) T = 0 T = 1 T = 1 Ω f T = 1 How is the fluid-structure coupling handled in ALE vs. Fictitious Domain frameworks ? 7/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

  11. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion ALE formalism : an illustrative example Current configuration x Ω f ( ξ s ) 8/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

  12. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion ALE formalism : an illustrative example Current configuration x Ω f ( ξ s ) � ∇ T · ∇ v d x = 0 Ω f ( ξ s ) 8/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

  13. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion ALE formalism : an illustrative example Current configuration Reference configuration x = x r + ξ ( x r , t ) F = ∂ x ∂ x r J = det ( F ) x x r Ω f Ω f ( ξ s ) 0 � ∇ T · ∇ v d x = 0 Ω f ( ξ s ) 8/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

  14. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion ALE formalism : an illustrative example Current configuration Reference configuration x = x r + ξ ( x r , t ) F = ∂ x ∂ x r J = det ( F ) x x r Ω f Ω f ( ξ s ) 0 � � ( F ( ξ s ) − T ∇ T ) · ( F ( ξ s ) − T ∇ v ) J ( ξ s ) d x r = 0 ∇ T · ∇ v d x = 0 Ω f Ω f ( ξ s ) 0 8/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

  15. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion ALE formalism : an illustrative example Current configuration Reference configuration x = x r + ξ ( x r , t ) F = ∂ x ∂ x r J = det ( F ) x x r Ω f Ω f ( ξ s ) 0 � � ( F ( ξ s ) − T ∇ T ) · ( F ( ξ s ) − T ∇ v ) J ( ξ s ) d x r = 0 ∇ T · ∇ v d x = 0 Ω f Ω f ( ξ s ) 0 The geometrical non-linearity can be put either : in the fluid integration domain or in the fluid integrand 8/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

  16. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion ALE formalism : an illustrative example Current configuration Reference configuration x = x r + ξ ( x r , t ) F = ∂ x ∂ x r J = det ( F ) x x r Ω f Ω f ( ξ s ) 0 � � ( F ( ξ s ) − T ∇ T ) · ( F ( ξ s ) − T ∇ v ) J ( ξ s ) d x r = 0 ∇ T · ∇ v d x = 0 Ω f Ω f ( ξ s ) 0 The geometrical non-linearity can be put either : in the fluid integration domain or in the fluid integrand Imagine what will happen with full Navier-Stokes ... 8/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

  17. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion Fictitious Domain formalism : an illustrative example Current configuration Ω 9/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

  18. Introduction Conforming vs. Non-Conforming App.1 : VIV on rigid cylinder App. 2 : cylinder with flexible appendice Conclusion Fictitious Domain formalism : an illustrative example Current configuration x Ω s ( ξ s ) Ω 9/22 J.Moulin - ERCOFTAC-SIG33, Siena, 19-21 June 2017 - Linear Stability Analysis of Fluid-Structure systems

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend