a dynamical system related to git
play

A dynamical system related to GIT Nolan R. Wallach June 4,2015 N. - PowerPoint PPT Presentation

A dynamical system related to GIT Nolan R. Wallach June 4,2015 N. Wallach () A dynamical system 6/4 1 / 18 A gradient system Let R [ x 1 , ..., x n ] be a polynomial that is homogeneous of degree m such that ( x ) 0 for all x


  1. A dynamical system related to GIT Nolan R. Wallach June 4,2015 N. Wallach () A dynamical system 6/4 1 / 18

  2. A gradient system Let φ ∈ R [ x 1 , ..., x n ] be a polynomial that is homogeneous of degree m such that φ ( x ) ≥ 0 for all x ∈ R n . We consider the gradient system dx dt = −∇ φ ( x ) N. Wallach () A dynamical system 6/4 2 / 18

  3. A gradient system Let φ ∈ R [ x 1 , ..., x n ] be a polynomial that is homogeneous of degree m such that φ ( x ) ≥ 0 for all x ∈ R n . We consider the gradient system dx dt = −∇ φ ( x ) Note that �∇ φ ( x ) , x � = m φ ( x ) Denoting by F ( t , x ) the solution to the system near t = 0 with F ( 0 , x ) = x . Then d dt � F ( t , x ) , F ( t , x ) � = − 2 �∇ φ ( F ( t , x )) , F ( t , x ) � = − 2 m φ ( F ( t , x )) ≤ 0 . N. Wallach () A dynamical system 6/4 2 / 18

  4. This implies � F ( t , x ) � ≤ � x � where defined for t ≥ 0 and hence F ( t , x ) is defined for all t ≥ 0. N. Wallach () A dynamical system 6/4 3 / 18

  5. This implies � F ( t , x ) � ≤ � x � where defined for t ≥ 0 and hence F ( t , x ) is defined for all t ≥ 0. The formula �∇ φ ( x ) , x � = m φ ( x ) combined with the Schwarz inequality implies that �∇ φ ( x ) � � x � ≥ m φ ( x ) . N. Wallach () A dynamical system 6/4 3 / 18

  6. This implies � F ( t , x ) � ≤ � x � where defined for t ≥ 0 and hence F ( t , x ) is defined for all t ≥ 0. The formula �∇ φ ( x ) , x � = m φ ( x ) combined with the Schwarz inequality implies that �∇ φ ( x ) � � x � ≥ m φ ( x ) . The Lojasiewicz gradient inequality implies the following 1 improvement. There exists 0 < ε ≤ m − 1 and C > 0 both depending only on φ such that �∇ φ ( x ) � 1 + ε � x � 1 − ( m − 1 ) ε ≥ C φ ( x ) . N. Wallach () A dynamical system 6/4 3 / 18

  7. We take ε and C as above (but allow ε = 0 which is easy). If we write F for F ( t , X ) and H ( t ) = φ ( F ( t , x )) then we have H � ( t ) = − d φ ( F ) ∇ φ ( F ) = − �∇ φ ( F ) � 2 . N. Wallach () A dynamical system 6/4 4 / 18

  8. We take ε and C as above (but allow ε = 0 which is easy). If we write F for F ( t , X ) and H ( t ) = φ ( F ( t , x )) then we have H � ( t ) = − d φ ( F ) ∇ φ ( F ) = − �∇ φ ( F ) � 2 . If t ≥ 0 and � x � ≤ r �∇ φ ( F ) � 1 + ε r 1 − ( m − 1 ) ε ≥ �∇ φ ( F ) � 1 + ε � F � 1 − ( m − 1 ) ε ≥ C φ ( x ) . N. Wallach () A dynamical system 6/4 4 / 18

  9. We take ε and C as above (but allow ε = 0 which is easy). If we write F for F ( t , X ) and H ( t ) = φ ( F ( t , x )) then we have H � ( t ) = − d φ ( F ) ∇ φ ( F ) = − �∇ φ ( F ) � 2 . If t ≥ 0 and � x � ≤ r �∇ φ ( F ) � 1 + ε r 1 − ( m − 1 ) ε ≥ �∇ φ ( F ) � 1 + ε � F � 1 − ( m − 1 ) ε ≥ C φ ( x ) . We will now run through what has come to be called “the Lojasiewicz argument” which I learned from a beautiful exposition of Neeman’s theorem by Gerry Schwarz. N. Wallach () A dynamical system 6/4 4 / 18

  10. C �∇ φ ( F ) � 1 + ε ≥ r 1 − 3 ε φ ( F ) . N. Wallach () A dynamical system 6/4 5 / 18

  11. C �∇ φ ( F ) � 1 + ε ≥ r 1 − 3 ε φ ( F ) . � � 2 C 1 + ε �∇ φ ( F ) � 2 ≥ 2 1 + ε . φ ( F ) r 1 − 3 ε N. Wallach () A dynamical system 6/4 5 / 18

  12. C �∇ φ ( F ) � 1 + ε ≥ r 1 − 3 ε φ ( F ) . � � 2 C 1 + ε �∇ φ ( F ) � 2 ≥ 2 1 + ε . φ ( F ) r 1 − 3 ε � � 2 | H � ( t ) | ≥ 1 C 1 + ε 2 2 1 + ε = C 1 ( r ) H ( t ) 1 + ε . φ ( F ) r 1 − 3 ε 2 N. Wallach () A dynamical system 6/4 5 / 18

  13. C �∇ φ ( F ) � 1 + ε ≥ r 1 − 3 ε φ ( F ) . � � 2 C 1 + ε �∇ φ ( F ) � 2 ≥ 2 1 + ε . φ ( F ) r 1 − 3 ε � � 2 | H � ( t ) | ≥ 1 C 1 + ε 2 2 1 + ε = C 1 ( r ) H ( t ) 1 + ε . φ ( F ) r 1 − 3 ε 2 2 Since H � ( t ) ≤ 0 for t ≥ 0 we have − H � ( t ) ≥ C 1 ( r ) H ( t ) 1 + ε . Assuming H ( t ) > 0 we have N. Wallach () A dynamical system 6/4 5 / 18

  14. C �∇ φ ( F ) � 1 + ε ≥ r 1 − 3 ε φ ( F ) . � � 2 C 1 + ε �∇ φ ( F ) � 2 ≥ 2 1 + ε . φ ( F ) r 1 − 3 ε � � 2 | H � ( t ) | ≥ 1 C 1 + ε 2 2 1 + ε = C 1 ( r ) H ( t ) 1 + ε . φ ( F ) r 1 − 3 ε 2 2 Since H � ( t ) ≤ 0 for t ≥ 0 we have − H � ( t ) ≥ C 1 ( r ) H ( t ) 1 + ε . Assuming H ( t ) > 0 we have H � ( t ) 1 + ε = − 1 − ε d dt H ( t ) − 1 − ε 1 + ε ≥ C 1 ( r ) 2 1 + ε H ( t ) N. Wallach () A dynamical system 6/4 5 / 18

  15. H ( t ) − 1 − ε 1 + ε ≥ C 1 ( r ) t . N. Wallach () A dynamical system 6/4 6 / 18

  16. H ( t ) − 1 − ε 1 + ε ≥ C 1 ( r ) t . H ( t ) ≤ C 2 ( r ) t − ( 1 + ε ) 1 − ε ≤ C 2 ( r ) t − ( 1 + ε ) , N. Wallach () A dynamical system 6/4 6 / 18

  17. H ( t ) − 1 − ε 1 + ε ≥ C 1 ( r ) t . H ( t ) ≤ C 2 ( r ) t − ( 1 + ε ) 1 − ε ≤ C 2 ( r ) t − ( 1 + ε ) , This is true if H ( t ) = 0 so the formula is valid for all t > 0. N. Wallach () A dynamical system 6/4 6 / 18

  18. H ( t ) − 1 − ε 1 + ε ≥ C 1 ( r ) t . H ( t ) ≤ C 2 ( r ) t − ( 1 + ε ) 1 − ε ≤ C 2 ( r ) t − ( 1 + ε ) , This is true if H ( t ) = 0 so the formula is valid for all t > 0. This is the first half of the calculus part of the Lojasiewicz argument. The first implication needs only the easy case ε = 0. If � x � ≤ r then φ ( F ( t , x )) ≤ C ( r ) t so lim t → + ∞ φ ( F ( t , x )) = 0 uniformly for x in compacta. We now do the rest of the Lojasiewicz argument which uses the existence of ε > 0 . N. Wallach () A dynamical system 6/4 6 / 18

  19. Let f ( t ) = t 1 + δ with 0 < δ < ε then for t > 0 0 < H ( t ) f � ( t ) ≤ C 2 ( r )( 1 + δ ) t − 1 − ( ε − δ ) . N. Wallach () A dynamical system 6/4 7 / 18

  20. Let f ( t ) = t 1 + δ with 0 < δ < ε then for t > 0 0 < H ( t ) f � ( t ) ≤ C 2 ( r )( 1 + δ ) t − 1 − ( ε − δ ) . � s d H ( s ) f ( s ) − H ( t ) f ( t ) = du ( H ( u ) f ( u )) du = t � s � s t H ( u ) f � ( u ) du + t H � ( u ) f ( u ) du . N. Wallach () A dynamical system 6/4 7 / 18

  21. Let f ( t ) = t 1 + δ with 0 < δ < ε then for t > 0 0 < H ( t ) f � ( t ) ≤ C 2 ( r )( 1 + δ ) t − 1 − ( ε − δ ) . � s d H ( s ) f ( s ) − H ( t ) f ( t ) = du ( H ( u ) f ( u )) du = t � s � s t H ( u ) f � ( u ) du + t H � ( u ) f ( u ) du . � s � s t H � ( u ) f ( u ) du = t H ( u ) f � ( u ) du + H ( t ) f ( t ) − H ( s ) f ( s ) . − 0 ≤ H ( s ) f ( s ) ≤ C 2 ( r ) s − ( 1 + ε ) s 1 + δ = C 2 ( r ) s − ( ε − δ ) . N. Wallach () A dynamical system 6/4 7 / 18

  22. Let f ( t ) = t 1 + δ with 0 < δ < ε then for t > 0 0 < H ( t ) f � ( t ) ≤ C 2 ( r )( 1 + δ ) t − 1 − ( ε − δ ) . � s d H ( s ) f ( s ) − H ( t ) f ( t ) = du ( H ( u ) f ( u )) du = t � s � s t H ( u ) f � ( u ) du + t H � ( u ) f ( u ) du . � s � s t H � ( u ) f ( u ) du = t H ( u ) f � ( u ) du + H ( t ) f ( t ) − H ( s ) f ( s ) . − 0 ≤ H ( s ) f ( s ) ≤ C 2 ( r ) s − ( 1 + ε ) s 1 + δ = C 2 ( r ) s − ( ε − δ ) . � s � ∞ � � � H � ( u ) � f ( u ) du = H ( u ) f � ( u ) du + H ( t ) f ( t ) . lim s → + ∞ t t N. Wallach () A dynamical system 6/4 7 / 18

  23. � | H � ( u ) | f ( u ) is in L 2 ([ t , + ∞ )) for all t > 0 and so Thus � � | H � ( u ) | f ( u ) u − ( 1 + δ ) ∈ L 1 ([ t , + ∞ )) . | H � ( u ) | = 2 N. Wallach () A dynamical system 6/4 8 / 18

  24. � | H � ( u ) | f ( u ) is in L 2 ([ t , + ∞ )) for all t > 0 and so Thus � � | H � ( u ) | f ( u ) u − ( 1 + δ ) ∈ L 1 ([ t , + ∞ )) . | H � ( u ) | = 2 Theorem. If t > 0 then � � � + ∞ � � d � � du F ( u , x ) � du � t converges uniformly for � x � ≤ r . N. Wallach () A dynamical system 6/4 8 / 18

  25. � | H � ( u ) | f ( u ) is in L 2 ([ t , + ∞ )) for all t > 0 and so Thus � � | H � ( u ) | f ( u ) u − ( 1 + δ ) ∈ L 1 ([ t , + ∞ )) . | H � ( u ) | = 2 Theorem. If t > 0 then � � � + ∞ � � d � � du F ( u , x ) � du � t converges uniformly for � x � ≤ r . � ∞ d du F ( u , x ) du t converges absolutely and uniformly for � x � ≤ r . N. Wallach () A dynamical system 6/4 8 / 18

  26. � | H � ( u ) | f ( u ) is in L 2 ([ t , + ∞ )) for all t > 0 and so Thus � � | H � ( u ) | f ( u ) u − ( 1 + δ ) ∈ L 1 ([ t , + ∞ )) . | H � ( u ) | = 2 Theorem. If t > 0 then � � � + ∞ � � d � � du F ( u , x ) � du � t converges uniformly for � x � ≤ r . � ∞ d du F ( u , x ) du t converges absolutely and uniformly for � x � ≤ r . Noting that if s > t then � s d du F ( u , x ) du = F ( s , x ) − F ( t , x ) t we have for t > 0 � ∞ d s → ∞ F ( s , x ) = lim du F ( u , x ) du + F ( t , x ) . t N. Wallach () A dynamical system 6/4 8 / 18

  27. t Finally, set L ( t , x ) = F ( 1 − t , x ) and define L ( 1 , x ) by the limit above then L : [ 0 , 1 ] × R n → R n is continuous and since ∇ φ ( x ) = 0 ⇐ ⇒ φ ( x ) = 0 we have N. Wallach () A dynamical system 6/4 9 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend