a computational model for perception of two dimensional
play

A Computational Model for Perception of Two-dimensional Pattern - PowerPoint PPT Presentation

A Computational Model for Perception of Two-dimensional Pattern Velocities Eero P. Simoncelli The Media Laboratory EECS Department, MIT David J. Heeger NASA-Ames Research Center Psychology Department, Stanford University Outline


  1. A Computational Model for Perception of Two-dimensional Pattern Velocities Eero P. Simoncelli The Media Laboratory EECS Department, MIT David J. Heeger NASA-Ames Research Center Psychology Department, Stanford University

  2. Outline • Computational model: Bayesian velocity estimator • Simple two-stage model implementation • Model response to plaid stimuli • Comparison to psychophysical data: - Ferrera & Wilson, 1990, 1991 - Stone, Watson, Mulligan, 1990 Simoncelli & Heeger, ARVO-92

  3. Bayesian Velocity Estimator • Gradient measurement equation, with noise model: I x (v - n 1 )+ I t + n 2 = 0 • Prior probability distribution on velocity: P(v) ~ N(0, σ v2 ) • Bayes' rule gives probability distribution on velocity: (I x v + I t ) 2 v 2 log P(v | I) ∝ ( σ e2 +I x2 ) σ v2 Simoncelli & Heeger, ARVO-92

  4. Implementation: Stage 1 Input: image intensities . . . • Linear filtering, using spatio- temporally oriented operators . . . • Energy computation (squaring) σ e2 • • + • Divisive normalization, with semi- saturation parameter, σ e ÷ ÷ . . . • Outputs are spatio-temporally Output: normalized "energy" tuned Simoncelli & Heeger, ARVO-92 Simoncelli & Heeger, ARVO-92

  5. Input: spatio-temporal energies Implementation: Stage 2 • • • • • • • σ v-2 • Weighted summation of stage 1 . . . energies over space, frequency + + bands Output: "velocity" • Some of the summations include prior variance parameter, σ v • Outputs are velocity tuned Simoncelli & Heeger, ARVO-92 Simoncelli & Heeger, ARVO-92

  6. Grating Examples stimulus idealization model V y V y V x V x V y V y V x V x Simoncelli & Heeger, ARVO-92 Simoncelli & Heeger, ARVO-92

  7. Plaids: Effect of Relative Contrast stimulus idealization model V y V y V x V x V y V y V x V x Simoncelli & Heeger, ARVO-92

  8. Total Contrast Stone et al. 1990 5% 10% 20% 40% Subject Model 20 20 Perceived Direction Bias (degrees) 15 15 10 10 5 5 0 0 -5 -5 0 1 2 3 4 0 1 2 3 4 Log Contrast Ratio Log Contrast Ratio Simoncelli & Heeger, ARVO-92

  9. Plaids: Effect of Grating Angles stimulus idealization model V y V y V x V x V y V y V x V x Simoncelli & Heeger, ARVO-92

  10. Ferrera & Wilson, 1990 8 Perceived Direction Bias (degrees) 6 subject 4 model 2 0 Sym m etr i c I Asym m etr i c I Type I I Plaid Type Simoncelli & Heeger, ARVO-92

  11. Ferrera & Wilson, 1991 1. 0 Perceived Speed (relative to IOC) 0. 8 subject2 model 0. 6 cosine 0. 4 0. 2 0 30 60 90 Plaid angle (degrees) Simoncelli & Heeger, ARVO-92

  12. Summary of Model • Derived as a Bayesian estimator • Starting from image intensities, computes response of a population of velocity-tuned units • Implemented in two simple stages of computation • Velocity estimates are consistent with psychophysics of plaid perception Simoncelli & Heeger, ARVO-92

  13. Simoncelli & Heeger, ARVO-92

  14. Example Receptive Field y t x x Simoncelli & Heeger, ARVO-92

  15. Spatio-temporal Filter Bank ω t ω x y t x x Simoncelli & Heeger, ARVO-92

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend