a classification of computational assumptions in the
play

A Classification of Computational Assumptions in the Algebraic Group - PowerPoint PPT Presentation

A Classification of Computational Assumptions in the Algebraic Group Model Balthazar Bauer, Georg Fuchsbauer, Julian Loss August 11, 2020 1 1. The Algebraic Group Model (FKL 2018) 2. Classification 3. Separation 2 1. The Algebraic Group


  1. A Classification of Computational Assumptions in the Algebraic Group Model Balthazar Bauer, Georg Fuchsbauer, Julian Loss August 11, 2020 1

  2. 1. The Algebraic Group Model (FKL 2018) 2. Classification 3. Separation 2

  3. 1. The Algebraic Group Model (FKL 2018) 2. Classification 3. Separation 3

  4. From GGM to AGM ◮ Let G be a cyclic group of prime order p . 4

  5. From GGM to AGM ◮ Let G be a cyclic group of prime order p . Standard Model ( � , ♥ ) b ( Z 1 , Z 2 , Z 3 ) � + ♥ C ( ♠ , ( a 1 , a 2 , a 3 )) such that ♠ = a 1 � + a 2 ♥ + a 3 ⋆ 4

  6. From GGM to AGM ◮ Let G be a cyclic group of prime order p . Standard Model ( � , ♥ ) b ( Z 1 , Z 2 , Z 3 ) � + ♥ C ( ♠ , ( a 1 , a 2 , a 3 )) Y such that ♠ = a 1 � + a 2 ♥ + a 3 ⋆ 4

  7. From GGM to AGM ◮ Let G be a cyclic group of prime order p . Generic Group Model ( � , ♥ , ⋆ ) C ♠ = a 1 � + a 2 ♥ + a 3 ⋆ ( ♠ , ( a 1 , a 2 , a 3 )) ♠ such that ♠ = a 1 � + a 2 ♥ + a 3 ⋆ 5

  8. From GGM to AGM ◮ Let G be a cyclic group of prime order p . Generic Group Model ( � , ♥ ) ( � , ♥ , ⋆ ) C ♠ = a 1 � + a 2 ♥ + a 3 ⋆ ( ♠ , ( a 1 , a 2 , a 3 )) ♠ such that ♠ = a 1 � + a 2 ♥ + a 3 ⋆ 5

  9. From GGM to AGM ◮ Let G be a cyclic group of prime order p . Generic Group Model ( � , ♥ ) ( � , ♥ , ⋆ ) ♣ = � + ♥ C ♠ = a 1 � + a 2 ♥ + a 3 ⋆ ( ♠ , ( a 1 , a 2 , a 3 )) ♠ such that ♠ = a 1 � + a 2 ♥ + a 3 ⋆ 5

  10. From GGM to AGM ◮ Let G be a cyclic group of prime order p . Generic Group Model ( � , ♥ ) ( � , ♥ , ⋆ ) ♣ = � + ♥ C ♠ = a 1 � + a 2 ♥ + a 3 ⋆ ♠ = a 1 � + a 2 ♥ + a 3 ⋆ ( ♠ , ( a 1 , a 2 , a 3 )) ♠ such that ♠ = a 1 � + a 2 ♥ + a 3 ⋆ 5

  11. From GGM to AGM ◮ Let G be a cyclic group of prime order p . Generic Group Model (modified) ( � , ♥ ) ( � , ♥ , ⋆ ) ♣ = � + ♥ C ♠ = a 1 � + a 2 ♥ + a 3 ⋆ ( ♠ , ( a 1 , a 2 , a 3 )) such that ♠ = a 1 � + a 2 ♥ + a 3 ⋆ 6

  12. From GGM to AGM ◮ Let G be a cyclic group of prime order p . Algebraic Group Model ( � , ♥ ) b ( Z 1 , Z 2 , Z 3 ) � + ♥ C Y = a 1 Z 1 + a 2 Z 2 + a 3 Z 3 ( Y , ( a 1 , a 2 , a 3 )) such that Y = a 1 Z 1 + a 2 Z 2 + a 3 Z 3 7

  13. Standard vs Algebraic ◮ No reduction from DLog to CDH in the standard model. 8

  14. Standard vs Algebraic ◮ No reduction from DLog to CDH in the standard model. ◮ Let A be an algebraic algorithm which solves CDH. 8

  15. Standard vs Algebraic ◮ No reduction from DLog to CDH in the standard model. ◮ Let A be an algebraic algorithm which solves CDH. ◮ B ( G , X ) : 8

  16. Standard vs Algebraic ◮ No reduction from DLog to CDH in the standard model. ◮ Let A be an algebraic algorithm which solves CDH. ◮ B ( G , X ) : $ ◮ v ← − Z ∗ p 8

  17. Standard vs Algebraic ◮ No reduction from DLog to CDH in the standard model. ◮ Let A be an algebraic algorithm which solves CDH. ◮ B ( G , X ) : $ ◮ v ← − Z ∗ p ◮ ( Y , ℓ 1 , ℓ 2 , ℓ 3 ) ← A ( G , X , X + v G ) 8

  18. Standard vs Algebraic ◮ No reduction from DLog to CDH in the standard model. ◮ Let A be an algebraic algorithm which solves CDH. ◮ B ( G , X ) : $ ◮ v ← − Z ∗ p ◮ ( Y , ℓ 1 , ℓ 2 , ℓ 3 ) ← A ( G , X , X + v G ) ( ℓ 1 G + ℓ 2 X + ℓ 3 ( X + v G ) = Y ) 8

  19. Standard vs Algebraic ◮ No reduction from DLog to CDH in the standard model. ◮ Let A be an algebraic algorithm which solves CDH. ◮ B ( G , X ) : $ ◮ v ← − Z ∗ p ◮ ( Y , ℓ 1 , ℓ 2 , ℓ 3 ) ← A ( G , X , X + v G ) ( ℓ 1 G + ℓ 2 X + ℓ 3 ( X + v G ) = Y ) ◮ { x ∗ 1 , x ∗ 2 } ← Solve ( ℓ 1 + ℓ 2 X + ℓ 3 ( X + v )) ≡ X ( X + v ) (mod p ) 8

  20. Standard vs Algebraic ◮ No reduction from DLog to CDH in the standard model. ◮ Let A be an algebraic algorithm which solves CDH. ◮ B ( G , X ) : $ ◮ v ← − Z ∗ p ◮ ( Y , ℓ 1 , ℓ 2 , ℓ 3 ) ← A ( G , X , X + v G ) ( ℓ 1 G + ℓ 2 X + ℓ 3 ( X + v G ) = Y ) ◮ { x ∗ 1 , x ∗ 2 } ← Solve ( ℓ 1 + ℓ 2 X + ℓ 3 ( X + v )) ≡ X ( X + v ) (mod p ) ◮ Output x ∗ i such that X = x ∗ i G 8

  21. Standard vs Algebraic ◮ No reduction from DLog to CDH in the standard model. ◮ Let A be an algebraic algorithm which solves CDH. ◮ B ( G , X ) : $ ◮ v ← − Z ∗ p ◮ ( Y , ℓ 1 , ℓ 2 , ℓ 3 ) ← A ( G , X , X + v G ) ( ℓ 1 G + ℓ 2 X + ℓ 3 ( X + v G ) = Y ) ◮ { x ∗ 1 , x ∗ 2 } ← Solve ( ℓ 1 + ℓ 2 X + ℓ 3 ( X + v )) ≡ X ( X + v ) (mod p ) ◮ Output x ∗ i such that X = x ∗ i G ◮ Conclusion: AGM enables new security reductions 8

  22. q -Diffie-Hellman Exponent ◮ Let G be a cyclic group of prime order p . 9

  23. q -Diffie-Hellman Exponent ◮ Let G be a cyclic group of prime order p .   G x G     x 2 G $   → x q + 1 G ← − Z p ; → x   ·     ·   x q G 9

  24. q -Diffie-Hellman Exponent ◮ Let G be a cyclic group of prime order p .   G x G     x 2 G $   → x q + 1 G ← − Z p ; → x   ·     ·   x q G Can we reduce DLog to q -DHE? 9

  25. q -Strong Diffie-Hellman (Boneh Boyen 2004 ) ◮ Let ( G 1 , G 2 , e ) be a bilinear cyclic group of prime order p . 10

  26. q -Strong Diffie-Hellman (Boneh Boyen 2004 ) ◮ Let ( G 1 , G 2 , e ) be a bilinear cyclic group of prime order p .   G 1 G 2     x G 2   � � $ 1   ← − Z p ; → → c , x 2 G 2 ( x + c ) G 1 x     ·     ·   x q G 2 10

  27. q -Strong Diffie-Hellman (Boneh Boyen 2004 ) ◮ Let ( G 1 , G 2 , e ) be a bilinear cyclic group of prime order p .   G 1 G 2     x G 2   � � $ 1   ← − Z p ; → → c , x 2 G 2 ( x + c ) G 1 x     ·     ·   x q G 2 Can we reduce DLog to q -SDH? 10

  28. DLog CDH DHI one-more DLog q ′ -DLog q -SDH SRDH Gap-DH q ′′ -DHE LRSW 11

  29. DLog CDH DHI one-more DLog q ′ -DLog q -SDH SRDH Gap-DH q ′′ -DHE LRSW 12

  30. DLog ? CDH DHI ? one-more DLog q ′ -DLog ? ? q -SDH SRDH Gap-DH q ′′ -DHE LRSW 13

  31. 1. The Algebraic Group Model (FKL 2018) 2. Classification 3. Separation 14

  32. ( � R , P ) -uber assumption (Boneh Boyen Goh 2005 ) ◮ General idea: Describe many assumptions 15

  33. ( � R , P ) -uber assumption (Boneh Boyen Goh 2005 ) ◮ General idea: Describe many assumptions ◮ � R ∈ Z p [ X 1 , . . . , X m ] n , P ∈ Z p [ X 1 , . . . , X m ] 15

  34. ( � R , P ) -uber assumption (Boneh Boyen Goh 2005 ) ◮ General idea: Describe many assumptions ◮ � R ∈ Z p [ X 1 , . . . , X m ] n , P ∈ Z p [ X 1 , . . . , X m ] R 1 = R 1 ( �  x ) G  R 2 = R 2 ( � x ) G   $   � → P ( � ← − Z m p ; · → x ) G x     ·   R n = R n ( � x ) G R ) : P = � a i R i Easy if P ∈ Span ( � x ) = � a i R i ( � P ( � x ) ; x ) G = � a i R i P ( � ; Hard in the GGM if P �∈ Span ( � R ) (non-triviality condition) 15

  35. ( � R , P ) -uber assumption (Boneh Boyen Goh 2005 ) ◮ General idea: Describe many assumptions (like CDH) ◮ � R ∈ Z p [ X 1 , . . . , X m ] n , P ∈ Z p [ X 1 , . . . , X m ]  R 1 = R 1 ( �  x ) G ( = 1 G ) $  → R 2 = R 2 ( � → P ( � ( x , y ) ← − Z 2 p ; x ) G ( = x G ) x ) G ( = xy G )  R 3 = R 3 ( � x ) G ( = y G ) Easy if P ∈ Span ( � R ) : R ) : P = � a i R i Easy if P ∈ Span ( � x ) = � a i R i ( � P ( � x ) ; x ) G = � a i R i P ( � ; Hard in the GGM if P �∈ Span ( � R ) (non-triviality condition) 16

  36. ( � R , P ) -uber assumption (Boneh Boyen Goh 2005 ) ◮ General idea: Describe many assumptions (like q -DHE) ◮ � R ∈ Z p [ X 1 , . . . , X m ] n , P ∈ Z p [ X 1 , . . . , X m ] R 1 = R 1 ( �  x ) G ( = 1 G )  R 2 = R 2 ( � x ) G ( = x G )     R 3 = R 3 ( � x ) G ( = x 2 G ) $   x ) G ( = x q + 1 G ) → P ( � ← − Z p ; → x   ·     ·   R n = R n ( � x ) G ( = x q G ) R ) : P = � a i R i Easy if P ∈ Span ( � x ) = � a i R i ( � P ( � x ) ; x ) G = � a i R i P ( � ; 17

  37. ( � R , P ) -uber assumption (Boneh Boyen Goh 2005 ) ◮ General idea: Describe many assumptions ◮ � R ∈ Z p [ X 1 , . . . , X m ] n , P ∈ Z p [ X 1 , . . . , X m ] R 1 = R 1 ( �  x ) G  R 2 = R 2 ( � x ) G   $   � → P ( � ← − Z m p ; · → x ) G x     ·   R n = R n ( � x ) G ◮ Easy if P ∈ Span ( � R ) : 18

  38. ( � R , P ) -uber assumption (Boneh Boyen Goh 2005 ) ◮ General idea: Describe many assumptions ◮ � R ∈ Z p [ X 1 , . . . , X m ] n , P ∈ Z p [ X 1 , . . . , X m ] R 1 = R 1 ( �  x ) G  R 2 = R 2 ( � x ) G   $   � → P ( � ← − Z m p ; · → x ) G x     ·   R n = R n ( � x ) G R ) : P = � a i R i ◮ Easy if P ∈ Span ( � 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend