a class of randomly generated semi infinite programming
play

A class of randomly generated semi-infinite programming test - PowerPoint PPT Presentation

A class of randomly generated semi-infinite programming test problems A. Ismael F. Vaz and Edite M.G.P. Fernandes Production and Systems Department - Engineering School Minho University - Braga - Portugal {aivaz,emgpf}@dps.uminho.pt


  1. A class of randomly generated semi-infinite programming test problems A. Ismael F. Vaz and Edite M.G.P. Fernandes Production and Systems Department - Engineering School Minho University - Braga - Portugal {aivaz,emgpf}@dps.uminho.pt Optimization 2004 - FCUL - Lisbon - Portugal 25-28 July

  2. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 1 Outline • Semi-Infinite Programming (SIP) • Motivation • Terminology/Optimality conditions • Signomials and extended signomials • Randomly generated constraints • Objective function of the randomly generated problem • The algorithm • Example (NSIPS output) and conclusions

  3. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 2 Semi-Infinite Programming (SIP) x ∈ R n f ( x ) min s.t. g i ( x, t ) ≤ 0 , i = 1 , ..., m h i ( x ) ≤ 0 , i = 1 , ..., o h i ( x ) = 0 , i = o + 1 , ..., q ∀ t ∈ T ⊂ R p f ( x ) is the objective function, h i ( x ) are the finite constraint functions, g i ( x, t ) are the infinite constraint functions and T is, usually, a cartesian product of intervals ( [ α 1 , β 1 ] × [ α 2 , β 2 ] × · · · × [ α p , β p ] )

  4. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 3 Motivation For most SIP problems, the exact solutions are not known a priori. This makes the selection of the best algorithm for SIP a difficult task (NSIPS solver). The existence of randomly generated SIP test problems (with known solutions) provides a way to evaluate accuracy, efficiency and reliability of known SIP algorithms.

  5. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 4 Terminology For the remaining of the talk, we denote x ∈ R n f ( x ) min s.t. x ∈ X , with X = { x ∈ R n | g u ( x, t ) ≤ 0 , u = 1 , . . . , m, ∀ t ∈ T, h v ( x ) = 0 , v = 1 , . . . , o, h v ( x ) ≤ 0 , v = o + 1 , . . . , q } as the upper level problem .

  6. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 5 Terminology - cont. and max t ∈ T g u ( x, t ) , u = 1 , . . . , m , as the lower level subproblems . Let ς u be the number of global maxima of the lower level subproblem u , which make the infinite constraint g u ( x, t ) ≤ 0 active. u κ t ∗ , for u = 1 , . . . , m and κ = 1 , . . . , ς u are the solutions to lower level subproblems.

  7. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 6 Optimality conditions - lower level problem � α j − t j ≤ 0 j = 1 , . . . , p ∀ t ∈ T ≡ [ α 1 , β 1 ] × · · · × [ α p , β p ] ⇔ t j − β j ≤ 0 j = 1 , . . . , p ( t = ( t 1 , . . . , t p ))

  8. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 6 Optimality conditions - lower level problem � α j − t j ≤ 0 j = 1 , . . . , p ∀ t ∈ T ≡ [ α 1 , β 1 ] × · · · × [ α p , β p ] ⇔ t j − β j ≤ 0 j = 1 , . . . , p ( t = ( t 1 , . . . , t p )) Given ¯ x (approximation to the upper level problem solution). The Lagrangian of the lower level subproblem u is p p � � L u ( t, u γ lb , u γ ub ) = g u ( x, t ) + u γ lb u γ ub j ( α j − t j ) + j ( t j − β j ) , j =1 j =1 u γ lb , u γ ub ∈ R p are the Lagrange multipliers vectors.

  9. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 7 Lower level first order KKT conditions The first order KKT conditions for a local maximum: ∇ t L u ( u t ∗ , u γ lb ∗ , u γ ub ∗ ) = 0

  10. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 7 Lower level first order KKT conditions The first order KKT conditions for a local maximum: ∇ t L u ( u t ∗ , u γ lb ∗ , u γ ub ∗ ) = 0 � α j − u t ∗ j ≤ 0 , j = 1 , . . . , p feasibility u t ∗ j − β j ≤ 0 , j = 1 , . . . , p

  11. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 7 Lower level first order KKT conditions The first order KKT conditions for a local maximum: ∇ t L u ( u t ∗ , u γ lb ∗ , u γ ub ∗ ) = 0 � α j − u t ∗ j ≤ 0 , j = 1 , . . . , p feasibility u t ∗ j − β j ≤ 0 , j = 1 , . . . , p � u γ lb ∗ j ( α j − u t ∗ j ) = 0 , j = 1 , . . . , p complementarity u γ ub ∗ ( u t ∗ j − β j ) = 0 , j = 1 , . . . , p j

  12. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 7 Lower level first order KKT conditions The first order KKT conditions for a local maximum: ∇ t L u ( u t ∗ , u γ lb ∗ , u γ ub ∗ ) = 0 � α j − u t ∗ j ≤ 0 , j = 1 , . . . , p feasibility u t ∗ j − β j ≤ 0 , j = 1 , . . . , p � u γ lb ∗ j ( α j − u t ∗ j ) = 0 , j = 1 , . . . , p complementarity u γ ub ∗ ( u t ∗ j − β j ) = 0 , j = 1 , . . . , p j u γ lb ∗ j , u γ ub ∗ Lagrange multipli- ≥ 0 , j = 1 , . . . , p j ers positiveness

  13. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 8 Lower level second order KKT conditions The second order sufficient condition: tt L u ( u t ∗ , u γ lb ∗ , u γ ub ∗ ) Z ≺ 0 , Z T ∇ 2 Z is a basis for the null space of the active constraints Jacobian at u t ∗ .

  14. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 9 Upper level Lagrangian The upper level Lagrangian function is q ς u m � � � κ δg u ( x, u u κ t ∗ ) , L ( x, λ, δ ) = f ( x ) + λ v h v ( x ) + v =1 u =1 κ =1 λ = ( λ 1 , . . . , λ q ) T is the Lagrange multipliers vector (finite constraints). ς u δ ) T is the multipliers vector (infinite constraint u δ = ( u 1 δ, . . . , u g u ( x, t ) ≤ 0 ( u = 1 , . . . , m )).

  15. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 10 Upper level first order KKT conditions The first order KKT conditions for a local SIP minimum: ∇ x L ( x ∗ , λ ∗ , δ ∗ ) = 0

  16. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 10 Upper level first order KKT conditions The first order KKT conditions for a local SIP minimum: ∇ x L ( x ∗ , λ ∗ , δ ∗ ) = 0 � λ ∗ v h v ( x ∗ ) = 0 , v = 1 , . . . , q complementarity u κ δ ∗ g u ( x ∗ , u κ t ∗ ) = 0 , u = 1 , . . . , m, κ = 1 , . . . , ς u

  17. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 10 Upper level first order KKT conditions The first order KKT conditions for a local SIP minimum: ∇ x L ( x ∗ , λ ∗ , δ ∗ ) = 0 � λ ∗ v h v ( x ∗ ) = 0 , v = 1 , . . . , q complementarity u κ δ ∗ g u ( x ∗ , u κ t ∗ ) = 0 , u = 1 , . . . , m, κ = 1 , . . . , ς u � λ ∗ v ≥ 0 , v = o + 1 , . . . , q Lagrange multipli- κ δ ∗ ≥ 0 , u = 1 , . . . , m, κ = 1 , . . . , ς u u ers positiveness

  18. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 10 Upper level first order KKT conditions The first order KKT conditions for a local SIP minimum: ∇ x L ( x ∗ , λ ∗ , δ ∗ ) = 0 � λ ∗ v h v ( x ∗ ) = 0 , v = 1 , . . . , q complementarity u κ δ ∗ g u ( x ∗ , u κ t ∗ ) = 0 , u = 1 , . . . , m, κ = 1 , . . . , ς u � λ ∗ v ≥ 0 , v = o + 1 , . . . , q Lagrange multipli- κ δ ∗ ≥ 0 , u = 1 , . . . , m, κ = 1 , . . . , ς u u ers positiveness � h v ( x ∗ ) = 0 , v = 1 , . . . , o feasibility h v ( x ∗ ) ≤ 0 , v = o + 1 , . . . , q

  19. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 10 Upper level first order KKT conditions The first order KKT conditions for a local SIP minimum: ∇ x L ( x ∗ , λ ∗ , δ ∗ ) = 0 � λ ∗ v h v ( x ∗ ) = 0 , v = 1 , . . . , q complementarity u κ δ ∗ g u ( x ∗ , u κ t ∗ ) = 0 , u = 1 , . . . , m, κ = 1 , . . . , ς u � λ ∗ v ≥ 0 , v = o + 1 , . . . , q Lagrange multipli- κ δ ∗ ≥ 0 , u = 1 , . . . , m, κ = 1 , . . . , ς u u ers positiveness � h v ( x ∗ ) = 0 , v = 1 , . . . , o feasibility h v ( x ∗ ) ≤ 0 , v = o + 1 , . . . , q κ t ∗ satisfies the KKT conditions of the lower level subproblem u . Each u

  20. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 11 Upper level second order sufficient condition The second order sufficient condition for a minimum: ∇ 2 xx L ( x ∗ , λ ∗ , δ ∗ ) ≻ 0 .

  21. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 12 Signomial and extended signomials Signomials are generalized polynomials of the form k n a ζη � � s ( x ) = , x > 0 , c η x ζ η =1 ζ =1

  22. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 12 Signomial and extended signomials Signomials are generalized polynomials of the form k n a ζη � � s ( x ) = , x > 0 , c η x ζ η =1 ζ =1 and the extended signomials   p k n a e � � � sin 2 ( t l b l π ) , x, c e s e ( x, t ) = c e ζη η , b l > 0 , x   η ζ η =1 ζ =1 l =1 where c η , a ζη , c e η , a e ζη and b l are real numbers.

  23. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 13 Randomly generated constraints m extended signomials s e 1 , . . . , s e m and q + 1 signomials s 0 , . . . , s q are randomly generated.

  24. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 13 Randomly generated constraints m extended signomials s e 1 , . . . , s e m and q + 1 signomials s 0 , . . . , s q are randomly generated. g u ( x, t ) = s e u ( x, t ) − s e u ( x ∗ , u t ∗ ) , u = 1 , . . . , m a

  25. Optimization 2004 - A.I.F. Vaz and E.M.G.P. Fernandes 13 Randomly generated constraints m extended signomials s e 1 , . . . , s e m and q + 1 signomials s 0 , . . . , s q are randomly generated. g u ( x, t ) = s e u ( x, t ) − s e u ( x ∗ , u t ∗ ) , u = 1 , . . . , m a g u ( x, t ) = s e u ( x, t ) − s e u ( x ∗ , u t ∗ ) − µ e u , u = m a + 1 , . . . , m

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend