5 e e leptons and quarks
play

5. e + e Leptons and Quarks Or: Why We Believe in Things We Dont - PowerPoint PPT Presentation

PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Griehammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2018 II. Phenomena 5. e + e Leptons and Quarks Or: Why We


  1. PHYS 6610: Graduate Nuclear and Particle Physics I H. W. Grießhammer INS Institute for Nuclear Studies The George Washington University Institute for Nuclear Studies Spring 2018 II. Phenomena 5. e + e − → Leptons and Quarks Or: Why We Believe in Things We Don’t See References: [PRSZR 9.1/3; PRSZR 15/16 (cursorily); HG 10.9, 15.1-7; HM 11.1-3; Tho 9.6] PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.5.0

  2. (a) Recap e + e − → µ + µ − : Massless Point-Fermions � = ( Z α ) 2 d σ � ( 1 + cos 2 θ ) � d Ω � cm 4 s Ang. distrib. characteristic of spin- 1 2 . s = q 2 > 0 : timelike γ Z k ′ տ ր p ′ Final state not electrons, ↑ q has quantum numbers of virtual photon: e − ( k ) ր տ e + ( p ) I ( J PC ) = 0 or 1 ( 1 −− ) [Tho 6.7] 137 , simple to interpret, e + e − collider cheap 1 � � � + + + � � � − − − Directly probes only charges, not strong int. σ cm = 4 π ( Z α ) 2 21 . 7nb = Z 2 E e cm [ GeV ] 3 s For massless point-fermions X of charge Z X : R : = σ ( e + e − → X ¯ X ) Z 2 ∑ → X 4 πα 2 / ( 3 s ) finals X with √ s ≥ 2 M X PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.5.1

  3. (b) Leptoproduction and Lepton Universality Threshold √ s min = 2 M l : muon M µ = 0 . 106 GeV (1936), tau lepton M τ = 1 . 777 GeV (1975) Lifetime τ ( τ − → e − ¯ ν e ν τ or µ − ¯ ν µ ν τ ) = 3 × 10 − 13 s ≫ τ elmag , strong = ⇒ weak decay Even at γ = E ≈ 100GeV ≈ 50 , τ lepton travels c γτ τ = 10 − 2 m before decay = ⇒ not in detector M τ Experiments at E ≫ M τ , M µ : R ( µ + µ − or τ + τ − ) = 1 = ⇒ Z µ = Z τ = 1 = Z e [PRSZR] = ⇒ Lepton Universality Hypothesis: Leptons couple with same form & strengths, and differ only by mass & charge (thresholds etc. different, but not fundamental couplings). PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.5.2

  4. Is Lepton Universality Broken? Update 2018. BaBar at SLAC 2012: branching ratio B → µ or τ [Phys. Rev. Lett. 109 (2012) 101802] LHCb at CERN 2015: branching ratio D , D ∗ → µ or τ [Phys. Rev. Lett. 115 (2015) 111803] [Heavy Flavour Averaging Group 2018] Lepton Universality may be broken: Small ( 10 − 2 ) but significant ( 3 . 9 σ ?) and important (Baryogenesis). = ⇒ Beyond-Standard-Model Physics? PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.5.3

  5. (c) e + e − → Hadrons : Overview non-resonant: well-reproduced by σ ∝ 1 s resonances: have quantum numbers of γ ∗ : I = 0 or 1 , J PC = 1 −− wide at low s , narrow at high s R = σ ( e + e − → hadrons ) σ ( e + e − → µ + µ − ) increases after each resonance region = ⇒ Hadron contains point-like, charged fermions with “small” masses. [PDG 2012 46.6] PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.5.4

  6. (d) Nonresonant Hadron Production (High Energies) � = ( Z α ) 2 2 particle: d σ � ( 1 + cos 2 θ ) Produce point spin- 1 � d Ω � cm 4 s √ s = 34 GeV [Per 5.5] Angular distribution of 2-jet event consistent with 1 + cos 2 θ = ⇒ Evidence for point-fermions. PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.5.5

  7. R Counts Quark Charges AND Colours R ( s ) : = σ ( e + e − → hadrons ) Z 2 ∑ σ ( e + e − → µ + µ − ) = i quarks i with 2 M i ≤ √ s = 10 9 � �� � � 2 � 2 6 9 + � 1 � 2 10 bottom = 11 9 + 3 charm 3 9 = 6 R = N c ∑ Z 2 q = 3 ∑ Z 2 q universal hidden property 9 � �� � q q � 2 � 2 � 2 � 2 � 1 � 1 = ⇒ each quark flavour in 3 variants: colours up + down + 3 3 3 strange PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.5.6

  8. Hadronisation from Vacuum: Avoiding Free Quarks & Gluons q pair carries energy E ≫ m q ; fly in opposite directions . No free quarks seen. Each quark of initial q ¯ = ⇒ Generate light q ¯ q pairs out of vacuum. Rearrange to dress bare quarks into baryons & mesons : timescale ≫ pair-production = ⇒ Production & hadronisation: 2-step process: incoherent sum of q ¯ q -pair productions d σ d Ω ( ee → hX ) d σ = ∑ q ) [ D h q ( z )+ D h d Ω ( ee → q ¯ q ( z )] ¯ q which are weighted by Quark-fragmentation functions q ( z = E h D h q , D h ) related to PDFs q ( x ) ¯ E q by crossing & time-reversal symmetries. PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.5.7

  9. (e) Resonant Hadron Production at Low Energies R Broad J PC = 1 −− resonances, τ ∼ 10 − [ 22 ... 24 ] s = ⇒ strong process. √ s [ GeV ] [PDG 2012 46.7] ω 0 ( 782 MeV ) : decay → π + π 0 π − ; no isospin partners = ⇒ I = 0 ρ 0 ( 770 MeV ) : decay → π + π − ; isospin partners ρ ± , 0 = ⇒ I = 1 spin-isospin-quark content e.g. | ρ + � = −| u ↑ ¯ d ↑ � Resonances in close proximity = ⇒ strong interference! = ⇒ Vector Meson Dominance (VMD) Model [ Sakurai 1960/69 ] : ρ , ω , φ N Elmag. dominated by these mesons, e.g. in γ N [HG 10.15] PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.5.8

  10. Post-Dicting Vector Mesons (VMD Endorsement) Something interesting should indeed happen around 800MeV : Lowest hadron production threshold: √ s = 2 m π from e + e − → ππ . πγ coupling from pion form factor for space-like q 2 < 0 (see II.2.g): pion FF � �� � a 2 6 ց q π = − i e ( p ′ µ − k ′ µ ) a 2 − q 2 with a 2 = J µ π � ≈ ( 740MeV ) 2 (exp) F π ( q 2 < 0 ) � r 2 Apply crossing symmetry/analytic continuation into time-like region q 2 = s > 0 : ⇒ Expect pole/very large amplitude/resonance in J PC = 1 −− processes around = → q q 2 = s = a 2 ≈ ( 740MeV ) 2 F π ( q 2 > 0 ) Agrees with ω / ρ -meson quantum numbers and m ω ≈ m ρ ≈ 775MeV . But be careful: Exp. only gives rough form factor with uncertainties. = ⇒ Analytic continuation needs “reasonable” assumptions. PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.5.9

  11. (f) φ Resonance: The Strange Quark φ ( 1019 MeV ) 85% → K + K − or K 0 ¯ K 0 − R √ s [ GeV ] [PDG 2012 46.7] Narrow resonance: Γ φ = 4 . 4 MeV since 2 m K = 990 MeV = ⇒ only 30 MeV of phase space! φ → πππ decay very small, although m φ − 3 m π = 600 MeV much bigger. = ⇒ Attribute to new quark flavour: Strange Quark ; strangeness S conserved in strong int. New charge formula: Q = Baryon + I 3 + S K + K − , K 0 ¯ K 0 isospin doublets = ⇒ 2 2 Gell-Mann–Nishijima relation Q s = − 1 , B s = 1 But strangeness of strange is S ( s ) = − 1 : That’s strange! (but a definition. . . ) 3 3 PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.5.10

  12. Gell-Mann 1962 (g) Extending Isospin: The Eightfold Way good explanation: [Tho 9.6] “Tamed” the Particle Zoo in the 1960’s. Multiplet classification scheme still used for nomenclature. Interpret Strangeness (or Strong Hypercharge Y = S + B ) as quantum number, orthogonal to Isospin. � u � One Can Show: symmetry group in Nature extends from SU I ( 2 ) → SU flavour ( 3 ) acting on d : s = ⇒ Fundamental quark-triplet & anti-triplet. Ladder Operators I ± , U ± , V ± raise/lower along triangle sides. PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.5.11

  13. Constructing Multiplets from The Fundamental Representations Combine Weight Diagrams like in SU ( 2 ) : Example: q ¯ q combinations give Meson Octet & Singlet. PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.5.12

  14. Lowest-Mass Meson Octets: Natural Isospin Doublets K + K 0 & K − ¯ K 0 Constituent picture = ⇒ Gell-Mann–Okubo mass formula: m meson = M meson + ∑ m qi ? bind i m s ≈ 360MeV ? diff. ± 350MeV avg. 320MeV ≈ 1! ; in Excited Octet: ± 80MeV 850MeV ≈ 1 SU f ( 3 ) -breaking in Ground-State Octet: 10 Example Octet-Breaking in φ : m φ − 3 m π ≈ 600MeV ≫ m φ − 2 m K ≈ 30MeV but π decay tiny, m s = m K − m ρ while decays to 85% into Kaons ≈ 120MeV ? = ⇒ | φ � ≈ | s ¯ s � ] or ( m φ − m ρ ) / 2 1 u � + | d ¯ ≈ 120MeV ? and not | φ � = 3 [ | u ¯ d � + | s ¯ s � √ PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.5.13

  15. π N / KN → X : Lowest-Mass Baryon Multiplets: Octet & Decouplet GMO: M baryon = M baryon + ∑ m qi bind i ⇓ linear increase m s ≈ 210MeV ? SU f ( 3 ) Breaking in Baryon Octet: ± 180MeV in Baryon Decouplet: ± 150MeV 1100MeV ≈ 1 1400MeV ≈ 1 6 10 ⇓ linear increase m s ≈ 140MeV ? Gell-Mann 1962: predict quantum numbers & mass of Ω − . Dedicated experiment found it. PHYS 6610: Graduate Nuclear and Particle Physics I, Spring 2018 H. W. Grießhammer, INS, George Washington University II.5.14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend