3d technology for imaging
play

3D TECHNOLOGY FOR IMAGING SENSOR AT CEA-LETI Gabriel Pars April 2015 - PowerPoint PPT Presentation

3D TECHNOLOGY FOR IMAGING SENSOR AT CEA-LETI Gabriel Pars April 2015 | LAL presentation LETI CONFIDENTIAL G. Pars / CEA-Leti AGENDA Leti brief overview Post-processing Leti 3D technology modules state of the art &


  1. 3D TECHNOLOGY FOR IMAGING SENSOR AT CEA-LETI Gabriel Parès April 2015 | LAL presentation LETI CONFIDENTIAL G. Parès / CEA-Leti

  2. AGENDA • Leti brief overview • Post-processing Leti 3D technology modules state of the art & development  Chip’s Interconnections : micro -bumps/pillars  Chip intra-connections: TSV • 3D examples: imaging sensor application  Image sensor for visible  Image sensor for high energy particles • Conclusion LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 2

  3. LETI AT A GLANCE Photonic Embedded Micro & Nanocharacterisation Chemical & Bio medical plateform systems Nanoelectronic platform material plateform platform platform LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 3

  4. Imaging @ LETI – a global offer From material to system Image processing  from photon to decision System Characterization Component Optics Integration - packaging Modeling - simulation ROIC design Continuous Technologies transfer Detection materials LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 4

  5. WHY DO WE NEED 3D INTEGRATION ?  To solve the following issues :  Form factor decrease :  X & Y axis  Z axis  Performances improvement  Decrease R, C, signal delay  Increase device bandwidth  Decrease power consumption  Heterogeneous integration  Integration of heterogeneous components in the same system  Cost decrease Interposer / substrate Interposer / substrate passives passives Memory Memory  Si surface decrease Logic Logic  Reuse of existing Packaging, BEOL & FEOL lines LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 5

  6. 3D TECHNOLOGICAL MODULES OVERVIEW 3D Technological modules : • • Through Silicon via (TSV) Wafer bonding: temporary or permanent • • Redistribution layer (RDL) Wafer thinning • • Under Bump Metallization (UBM) Components stacking • • 3D Interconnections: µbump/µpillar Wafer level packaging Top dies Micro-bumps Front side UBM Micro pillars TSV Passivation RDL Bumps Back side UBM BGA or package LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 6

  7. THE 3D INTERCONNECTIONS DIVA Top Die µbumps/µpillars Top chip TSV & RDL Post ECD Cu/SnAg Post Reflow Bottom chip Die to Die µBumps (  20µm) 6x55 µm 10x80 µm TSV Middle bumps/pillars Board Bottom Die Heterogeneous 3D integration on interposer Post ECD Ni/Au Die to Die µPillars (  20µm) TSV Last From C. Ribière CEA-Leti 2015 ALPS DIVA Post ECD Cu/SnAg Post Reflow Back side : RDL Front side : Damascene Back side material and Die to Substrate Bumps (  55µm) Intradie interconnexions: RDL and TSV stress management LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 7

  8. THE GENERIC TOOLBOX FOR 3D Handling Connecting Die to Substrate TSV Die Placement WL Molding thinning Thick Polymer High throuput handling Solder balls Wire Bonding TSV First molding P&P TSV Middle Temp Bonding Thin Polymer High precision Copper Pillars Solder balls AR10 (Zonebond) molding P&P TSV Last Thin Oxide High temp. Self Assembly Via belt Copper pillar AR2.5 planarization bonding TSV Last Permanent Wafer WLUF µtubes AR5 bonding To Wafer TSV Last Capillary Thinning Cu-Cu High temp Underfill Super TSV Last Rdl Thick Cu High density thinning LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 8

  9. THE DIE-TO-DIE VERTICAL INTER- CONNECTIONS: MICRO-BUMP/MICRO PILLARS/UBM

  10. LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 10

  11. STANDARD FLIP CHIP STACKING OPTIONS Solder balls with UBM on both dies Example : UBM Ti/Ni/Au (PVD/ECD) or Ni/Pd/Au (eless) Medipix Solder balls (Pb, Pb free) UBM Ti/Ni/Au (PVD/ECD) or Ni/Pd/Au (eless) Usual pitch limited to 140 µm (70/70) feasibility proven ~ 70 µm (omegapix) µbump and UBM, usually µbump are on top chips Example : Micro-bumps Cu/SnAg ECD FEI4/sensor UBM Ti/Ni/Au (PVD/ECD) or Ni/Pd/Au (eless) Usual pitch limited to 40 µm (20/20) feasibility proven ~ 20 µm µbump and µpillar (or Cu post), usually µbump are on top chips CMOS/CMOS Micro-bumps Cu/SnAg ECD Micro pillars Cu only or wit cap option (Ni, SnAg or Ti/Au) Usual pitch limited to 40 µm (20/20) feasibility proven ~ 20 µm LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 11

  12. MICRO-BUMPS PORTFOLIO VS CMOS NODES Micro-bumps DRM & schematic Micro-bumps Solder alloy  Wafer size : 300 - 200 mm Cu post  Micro-bumps material : Cu post / SnAg 305 solder Top passivation  Minimum pitch : 40 µm Top metal  Minimum micro-bumps diameter : 20 µm  Micro-bumps thickness (typical): Cu 10µm / SnAg 10µm Micro-bumps Morphological illustrations Micro-bumps on C65 Micro-bumps on FDSOI28 Micro-bumps before reflow Micro-bumps after reflow D= 25 µm D= 18 µm leti leti leti leti leti leti leti leti LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 12

  13. PROCESS OF THE SOLDER BUMPS Semi-additive electroplating growth: • Full sheet seed PVD deposition Ti-Cu Front side CMOS • Photolithography with thick resist (>0 or <0) • Electroplating of the metals: Cu-(Ni)-SnAg- (Au) • Resist stripping • Seed wet/dry etching • Reflow From C. Ribière CEA-Leti 2015 Challenges for fabrication of microbumps << Ø20µm: • New thick resist with better definition • Limitation of the seed layer under-etching • Control of the IMC Cu/SnAg for reliability (mechanical and EMG) LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 13

  14. THE IMC FORMATION DURING REFLOW CYCLE • Copper diffuses inside SnAg • Formation of Cu 6 Sn 5 • Formation of some voids (Kirkendall) at the interface and of Ag 3 Sn precipitates : can lead to reliability issue Présence de voids From C. Ribière CEA-Leti 2015 LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 14

  15. EFFECT OF X REFLOWS • Growth of IMC CU 6 Sn 5 and creation of Cu 3 Sn phase. • Increase of Kirkendall voids at Cu 3 Sn interface Reflow 1X Reflow 3X Reflow 5X From C. Ribière CEA-Leti 2015 LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 15

  16. THE EFFECT OF NI INTERLAYER • Only Ni 3 Sn 4 IMC with slow reaction. • No Kirkendall voids. • But Ni 3 Sn 4 IMC is more fragile // Cu 6 Sn 5 (literature) : impact on reliability needs to be more studied for small diameters SnAg Ni3Sn4 Ni Ni Cu Depotion ECD Cu/Ni/SnAg From C. Ribière CEA-Leti 2015 LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 16

  17. FINE PITCH µBUMPS DEVELOPMENT From C. Ribière CEA-Leti 2015 LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 17

  18. TECHNOLOGY FOR VERY LOW PITCH … INTERCONNECTION High volume manufacturability Advanced (HVM) (300mm compatibility, high technologies speed P&P) TLP(Cu/Sn) Cu pillars Pre-applied underfill Si Si Cu Cu Room T Insertion SiO 2 SiO 2 Si Si Solder-free µinserts Direct bonding WtW or DtW Nickel Micro-insertion Current technologies µtubes Microinsertion 100-30 µm range 30-5 µm range Down to 1µm LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès March 2015 | 18

  19. FINE PITCH INTERCONNECTION WITH µTUBES LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 19

  20. FINE PITCH INTERCONNECTION WITH INDIUM BUMPS LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 20

  21. DIRECT BONDING FOR ULTRA LOW PITCH INTERCONNECTION Si Si Cu Cu SiO 2 SiO 2 Si Si Direct bonding transmission electron SEM of bonded patterned WtW or DtW imaging of the copper structure (hybrid oxide- Composite Cu/SiO2 interface pad bonding metal) at 400°C Perfect ohmic contact: 22.5m  .µm2 14µm pitch (Equivalent to bulk copper) along x Measured resistance of 29422 interconnect 7µm along y daisy chain:  88.5% yield, 1,2% standard deviation  Roadmap to Pitch lower than 2 µm, In Progress Min (Ω) Max (Ω) Post bonding annealing Average Standard resistance (Ω) deviation (%) DC5 400°C for 2h 2162 2291 2202 1.18 Source: “200 °C direct bonding copper interconnects : Electrical results and reliability”, L. Di Cioccio et al, IEDM 2011 LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 21

  22. LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 22

  23. UNDERFILL Underfill = material filling the gap created by interconnections between two parts (chip or substrate) Used for different purposes: • physical barrier to moisture to avoid corrosion • filling the air gap around the interconnections before overmolding • lowering strains and stresses in the interconnections when subjected to thermo-mechanical fatigue underfill Si chips underfill underfill Si interposer BGA underfill Source: Yole Développement LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 23

  24. UNDERFILLING TECHNIQUES DEVELOPMENT Post-applied underfill Pre-applied underfills CUF NCP WLUF = NCF Limited for fine pitch Source: A. Garnier, ECTC 2014 Cons: Pro: • • Low througput High density/fine pitch • • Underfill entrapment Narrow stand off • • Process sensitive to No flux interco layout LETI CONFIDENTIAL 3D for imaging sensors | Gabriel Parès April 2015 | 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend