21st century statistical computation for exoplanet studies
play

21st-Century Statistical Computation for Exoplanet Studies Tom - PowerPoint PPT Presentation

21st-Century Statistical Computation for Exoplanet Studies Tom Loredo Dept. of Astronomy, Cornell University http://www.astro.cornell.edu/staff/loredo/ With David Chernoff, Merlise Clyde, Jim Berger, Floyd Bullard, Jim Crooks Work very much


  1. 21st-Century Statistical Computation for Exoplanet Studies Tom Loredo Dept. of Astronomy, Cornell University http://www.astro.cornell.edu/staff/loredo/ With David Chernoff, Merlise Clyde, Jim Berger, Floyd Bullard, Jim Crooks Work very much in progress MaxEnt — July 9, 2007

  2. A Productive Methodological Union ,-.*&/&0$'%&1'".( !"#$%&"'()*"*&%*&+% 2'*$34"*&1' !"#$%$"&$'()$&*+*,"(-.$,%/'( 345124%$'(6,"2$(31%7,'( !"#,%012*,"(-.$,%/ 636386$2%,9,7*+:;1+2*"<+=== !""#$%&'()*%+$),'-.).$+.$/+

  3. An Unproductive Sociological Divide !"#$%&'(&*,$& !"#$%&'(&)*"*'%*'+% -,#%'+".&)+'$(+$% !"#$%&'"()*+%&$*&,-.*//-%& 3"<#"7*444%&?*;;9*+)444% 0"1"2*%&3-.$#*+444 @8A%&?"+.*)%&BC##%&0D-##-.2% 5678.8(*/9-7)%&:-8-.;89("/-7)%& )87-8#82+%&<)+7=8#82+444> E9*//=89)/444 !"#$%&'()$"*+,)-",-

  4. An Example Cosmological Parameters from WMAP & SDSS Tegmark et al. 2004 • Looked at over 2 dozen models with 2 – 10 params • Used random walk MCMC in “rotated” params • Typical run length 3 – 5 × 10 5 ; a few runs trapped • 30 CPU years of effort

  5. Outline 1 Introducing Exoplanets 2 Bayesian Methods for Exoplanets 3 Some 21st Century Algorithms A Bayesian pipeline Improved MCMC for parameter estimation Marginal likelihood calculation

  6. Outline 1 Introducing Exoplanets 2 Bayesian Methods for Exoplanets 3 Some 21st Century Algorithms A Bayesian pipeline Improved MCMC for parameter estimation Marginal likelihood calculation

  7. Extrasolar Planets Exoplanet detection/measurement methods: • Direct: Transits, gravitational lensing, imaging, interferometric nulling • Indirect: Keplerian reflex motion (line-of-sight velocity, astrometric wobble) The Sun’s Wobble From 10 pc 1000 500 0 -500 -1000 -1000 -500 0 500 1000

  8. Radial Velocity Technique As of July 2007, 245 planets found, including 26 multiple-planet systems Vast majority (233) found via Doppler radial velocity (RV) measurements

  9. Parameters for an Orbit — Single Planet Intrinsic geometry: semimajor axis a , eccentricity e Orientation: 3 Euler angles, i , ω , Ω Time: period τ , origin M p RV parameters: semi-amplitude K ( a , e , τ ), τ , e , M p , ω , COM velocity v 0 Physics: min. mass m sin i , size a , eccentricity e (Ultimate goal: multiple planets, astrometry → ∼ 30+ parameters!)

  10. Conventional RV Data Analysis Analysis method: Identify best candidate period via periodogram; fit parameters with nonlinear least squares !"#"$%&%'"( )"#"*&$' +",-."-"#"*&%*"/01 2"#"*&%3"45" 6-,7)8")9"2:&"%**'

  11. Issues with Periodogram + Least Squares • Multimodality, nonlinearity, sparse data → “∆ χ 2 ” uncertainties not valid • Reporting uncertainties in derived parameters ( m sin i , a ) • Lomb-Scargle periodogram not optimal for eccentric and multiple planets • Handling marginal detections • Combining info from many systems for pop’n studies • Scheduling future observations Bayesian statistics can address all these within a unified framework!

  12. Outline 1 Introducing Exoplanets 2 Bayesian Methods for Exoplanets 3 Some 21st Century Algorithms A Bayesian pipeline Improved MCMC for parameter estimation Marginal likelihood calculation

  13. Scientific Goals ⇐ ⇒ Bayesian Methodology • Improved system inferences — Detection (marginal likelihoods, Bayes factors), estimation (joint & marginal posteriors) • Improved population inferences — Propagate system uncertainties (including detection uncertainties and selection effects) to population level (hierarchical/multi-level Bayes) • Adaptive scheduling — Plan future observations to most quickly reduce uncertainties (Bayesian experimental design) Prior information & data Combined information Inference Strategy New data Predictions Strategy Observ’n Design Interim results

  14. Keplerian Radial Velocity Model Parameters for single planet • Argument of pericenter ω • τ = orbital period (days) • Mean anomaly of pericenter • e = orbital eccentricity passage M p • K = velocity amplitude (m/s) • System center-of-mass velocity v 0 Velocity vs. time v ( t ) = v 0 + K ( e cos ω + cos[ ω + υ ( t )]) True anomaly υ ( t ) found via Kepler’s equation for eccentric anomaly: � 1 / 2 E ( t ) − e sin E ( t ) = 2 π t tan υ � 1 + e tan E − M p ; 2 = τ 1 − e 2 A strongly nonlinear model!

  15. The Likelihood Function Keplerian velocity model with parameters θ = { K , τ, e , M p , ω, v 0 } : d i = v ( t i ; θ ) + ǫ i For measurement errors with std dev’n σ i , and additional “jitter” with std dev’n σ J , L ( θ, σ J ) ≡ p ( { d i }| θ, σ J ) N [ d i − v ( t i ; θ )] 2 1 � − 1 � � = exp � 2 σ 2 i + σ 2 σ 2 i + σ 2 2 π J i =1 J   � � 1 − 1 �  exp 2 χ 2 ( θ ) ∝ � σ 2 i + σ 2 2 π i J [ d i − v ( t i ; θ )] 2 � χ 2 ( θ, σ J ) ≡ where σ 2 i + σ 2 J i Ignore jitter for now . . .

  16. What To Do With It Parameter estimation Posterior dist’n for parameters of model M i with i planets: p ( θ | D , M ) ∝ p ( θ | M ) L i ( θ ) Summarize with mode, means, credible regions (found by integrating over θ ) Detection Calculate probability for no planets ( M 0 ), one planet ( M 1 ) . . . . Let I = { M i } . p ( M i | D , I ) ∝ p ( M i | I ) L ( M i ) � where L ( M i ) = d θ p ( θ | M i ) L ( θ ) Marginal likelihood L ( M i ) includes “Occam factor”

  17. Design Predict future datum d t at time t , accounting for model uncertainties: � p ( d t | D , M i ) = d θ p ( d t | θ, M i ) p ( θ | D , M i ) . 1st factor is Gaussian for d t with known model; 2nd term & integral account for uncertainty. Information theory → best time has largest d t uncertainty. Population analysis Multi-level (“hierarchical”) model: Parameterize the orbit parameter prior and infer it. Include probabilities for star having (1, 2, . . . ) planets → Bayes factors weight system contributions. Need all data, well-characterized surveys.

  18. Current MCMC Methods Random Walk Metropolis Parallel Tempering (Ford) (Gregory) General purpose, but Performance depends a lot inefficient/unwieldy on parameterization

  19. Outline 1 Introducing Exoplanets 2 Bayesian Methods for Exoplanets 3 Some 21st Century Algorithms A Bayesian pipeline Improved MCMC for parameter estimation Marginal likelihood calculation

  20. Improving Exoplanet Bayesian Calculation Seek more efficient and less unwieldy samplers → abandon “general purpose” algorithms Keep all tasks in mind: Estimation, detection, design, pop’n . . . Guidelines for modest dimensional Bayesian computation: • Know thine enemy — Understand scales in various dimensions, multimodality, locate modes; significant exploration should precede & guide sampling • Reduce dimensionality — Analytic/numerical techniques may help • Clever priors — If a clever prior (that doesn’t do too much violence to real prior info) helps, use it; you can weight and resample/Rao-Blackwellize later • Try different samplers — Nearly 20 years of ideas

  21. Know Thine Enemy I: Linear vs. Nonlinear Parameters v ( t ) = v 0 + K ( e cos ω + cos[ ω + υ ( t )]) = A 1 + A 2 [ e + cos υ ( t )] + A 3 sin υ ( t ) A 1 = v 0 ; A 2 = K cos ω ; A 3 = − Ksin ω Model is linear wrt A i , nonlinear wrt e , M p , ω → p ( θ ) = p ( τ, e , M p ) p ( { A i }| τ, e , M p ) || D , M 1 with p ( { A i }| τ, e , M p ) conditionally normal if we adopt a flat or conjugate prior for { A i } . Flat prior → p ( K | M 1 ) ∝ K . Using this interim prior , dimension can be reduced by 3.

  22. Know Thine Enemy II — Slices Extreme multimodality in τ ; challenging multimodality in M p ; smooth in e

  23. Periodogram Connections Bayesian periodograms (Jaynes-Bretthorst algorithm) Data are superposition of periodic functions + noise: M � d i = A α g α ( t i ; ω ; θ ) + e i α =1 Calculate L ( { A } , ω, θ ) using χ 2 . Integrate out A ’s → least squares + volume factors: − r 2 ( ω, θ ) � � p ( ω, θ | D ) ∝ p ( ω, θ ) J ( ω, θ ) exp 2 r 2 ( ω, θ ) is squared residual, found by diagonalizing metric η αβ = g α · g β Integrate out θ numerically → p ( ω | D ); S ( ω ) ≡ ln [ p ( ω | D )] Generalizes Schuster periodogram & LSP.

  24. Circular Orbits Assume circular orbits : θ = { K , τ, φ, v 0 } Frequentist For given τ , maximize likelihood over K and φ (set v 0 to data mean, ¯ v ) → profile likelihood: log L p ( τ, ¯ v ) ∝ Lomb-Scargle periodogram Bayesian For given τ , integrate (“marginalize”) likelihood × prior over K and φ (set v 0 to data mean, ¯ v ) → marginal posterior: log p ( τ, ¯ v | D ) ∝ Lomb-Scargle periodogram Additionally marginalize over v 0 → floating-mean LSP

  25. Radial Kepler Periodogram for Eccentric Orbits v ( t ) = A 1 + A 2 [ e + cos υ ( t )] + A 3 sin υ ( t ) For given ( τ, e , M p ), analytically marginalize { A i } : ln p ( τ, e , M p | D , M p ) = (Radial) Kepler-gram For given τ , marginalize over ( e , M p ): log p ( τ | D ) ∝ (Radial) Kepler periodogram This requires a 2-d numerical integral.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend