1
play

1 Discrete Conditional Distributions Operating System Loyalty - PDF document

Sum of Independent Binomial RVs Sum of Independent Poisson RVs Let X and Y be independent random variables Let X and Y be independent random variables X ~ Poi( l 1 ) and Y ~ Poi( l 2 ) X ~ Bin(n 1 , p) and Y ~ Bin(n 2 , p) X


  1. Sum of Independent Binomial RVs Sum of Independent Poisson RVs • Let X and Y be independent random variables • Let X and Y be independent random variables  X ~ Poi( l 1 ) and Y ~ Poi( l 2 )  X ~ Bin(n 1 , p) and Y ~ Bin(n 2 , p)  X + Y ~ Bin(n 1 + n 2 , p)  X + Y ~ Poi( l 1 + l 2 ) • Intuition: • Proof: (just for reference)  X has n 1 trials and Y has n 2 trials  Rewrite (X + Y = n ) as (X = k , Y = n – k ) where 0  k  n o Each trial has same “success” probability p n n             P ( X Y n ) P ( X k , Y n k ) P ( X k ) P ( Y n k )  Define Z to be n 1 + n 2 trials, each with success prob. p   k 0 k 0  Z ~ Bin(n 1 + n 2 , p), and also Z = X + Y l l  l l   l  l k n k k n k ( ) n n e n n !   1 2    l  l   l  l  l l  1 2 ( ) 1 2 k n k e 1 e 2 e 1 2 • More generally: X i ~ Bin(n i , p) for 1  i  N    1 2 k ! ( n k )! k ! ( n k )! n ! k ! ( n k )!    k 0 k 0 k 0     n N    n n !     l  l  l l  ~ Bin ,  Noting Binomial coefficient: ( ) n k n k X n p  i i 1 2 1 2     k ! ( n k )!    i 1 i 1  l  l   k 0 ( ) e 1 2    l  l n so, X + Y = n ~ Poi( l 1 + l 2 )  P ( X Y n ) 1 2 ! n Dance, Dance, Convolution Sum of Independent Uniform RVs • Let X and Y be independent random variables • Let X and Y be independent random variables  X ~ Uni(0, 1) and Y ~ Uni(0, 1)  f ( a ) = 1 for 0  a  1  Cumulative Distribution Function (CDF) of X + Y:    F ( a ) P ( X Y a )   What is PDF of X + Y? X Y   a y      1 1 f ( x ) f ( y ) dx dy f ( x ) dx f ( y ) dy       ( ) ( ) ( ) ( ) X Y X Y f a f a y f y dy f a y dy  X Y X Y X       x y a y x   y 0 y 0   When 0  a  1 and 0  y  a , 0  a – y  1  f X ( a – y ) = 1    ( ) ( ) F a y f y dy   a X Y  ( ) f a dy a   y  X Y  y 0  F X+Y is called convolution of F X and F Y  When 1 < a < 2 and a – 1  y  1, 0  a – y  1  f X ( a – y ) = 1  Probability Density Function (PDF) of X + Y, analogous:   1   ( a ) f  f ( a ) dy 2 a X   Y X Y    f ( a ) f ( a y ) f ( y ) dy   y a 1  1 X Y X Y    a 0 a 1    y        Combining: f ( a )  2 a 1 a 2   In discrete case, replace with , and f ( y ) with p ( y )  X Y  a  0 otherwise 1 2   y y Sum of Independent Normal RVs Virus Infections • Let X and Y be independent random variables • Say your RCC checks dorm machines for viruses  X ~ N( m 1 , s 1 2 ) and Y ~ N( m 2 , s 2 2 )  50 Macs, each independently infected with p = 0.1  100 PCs, each independently infected with p = 0.4  X + Y ~ N( m 1 + m 2 , s 1 2 + s 2 2 ) A ~ Bin(50, 0.1)  X ~ N(5, 4.5)  A = # infected Macs B ~ Bin(100, 0.4)  Y ~ N(40, 24)  B = # infected PCs • Generally, have n independent random variables  What is P(≥ 40 machine infected)? X i ~ N( m i , s i 2 ) for i = 1, 2, ..., n :  P(A + B ≥ 40)  P(X + Y ≥ 39.5)     n n n  X + Y = W ~ N(5 + 40 = 45, 4.5 + 24 = 28.5)       m s  2 ~ , X N      i   i i  W 45 39 . 5 45             i 1 i 1 i 1 P ( W 39 . 5 ) P 1 ( 1 . 03 ) 0 . 8485   28 . 5 28 . 5 • Be glad it’s not swine flu! 1

  2. Discrete Conditional Distributions Operating System Loyalty • Recall that for events E and F: • Consider person buying 2 computers (over time) ( ) P EF  X = 1st computer bought is a PC (1 if it is, 0 if it is not)   P ( E | F ) where P ( F ) 0 P ( F )  Y = 2nd computer bought is a PC (1 if it is, 0 if it is not) • Now, have X and Y as discrete random variables  Joint probability mass function (PMF):  What is P(Y = 0 | X = 0)?  Conditional PMF of X given Y (where p Y ( y ) > 0): X 0 1 p Y (y)   Y p ( x , y ) P ( X x , Y y ) ( 0 , 0 ) p 0 . 2 2      ,      ( | ) ( | ) X Y X , Y P x y P X x Y y P ( Y 0 | X 0 )  X | Y 0 0.2 0.3 0.5 ( ) ( ) p ( 0 ) 0 . 3 3 P Y y p y X Y  What is P(Y = 1 | X = 0)?  Conditional CDF of X given Y (where p Y ( y ) > 0): 1 0.1 0.4 0.5 p ( 0 , 1 ) 0 . 1 1        X , Y P ( X a , Y y ) P ( Y 1 | X 0 )     p X (x) 0.3 0.7 1.0 ( 0 ) 0 . 3 3 F ( a | y ) P ( X a | Y y ) p X X | Y  P ( Y y )   What is P(X = 0 | Y = 1)? p ( x , y )    X , Y  ( 0 , 1 ) x a p 0 . 1 1 p ( x | y )      X , Y P ( X 0 | Y 1 ) X | Y p ( y )  p ( 1 ) 0 . 5 5 Y x a Y And It Applies to Books Too… Web Server Requests Redux • Requests received at web server in a day X ~ Poi( l 1 )  X = # requests from humans/day Y ~ Poi( l 2 )  Y = # requests from bots/day  X and Y are independent  X + Y ~ Poi( l 1 + l 2 )  What is P(X = k | X + Y = n )?       P ( X k , Y n k ) P ( X k ) P ( Y n k )      P ( X k | X Y n )     P ( X Y n ) P ( X Y n )  l  l   l l l l k n k ! ! k n k e 1 e 2 n n      1 2 1 2   l  l l  l  l  l ( ) n n k ! ( n k )! e ( ) k ! ( n k )! ( ) 1 2 1 2 1 2    k   n k   l l n        1 2       l  l l  l  k      1 2 1 2   l    1  X | X + Y ~ Bin X Y ,   l  l P(Buy Book Y | Bought Book X)   1 2 Let’s Do an Example Continuous Conditional Distributions • Let X and Y be continuous random variables • X and Y are continuous RVs with PDF:  12     x ( 2 x y ) wh ere 0 x,y 1  Conditional PDF of X given Y (where f Y ( y ) > 0):   5 f ( x , y )  0 otherwise f ( x , y )  , ( | ) X Y f x y X | Y ( ) f y Y  Compute conditional density: f ( x | y ) X | Y f ( x , y ) dx dy  X , Y f ( x | y ) dx ( , ) ( , ) f x y f x y X | Y f ( y ) dy   X , Y X , Y f ( x | y ) Y |       X Y 1 f ( y ) P ( x X x dx , y Y y dy )          Y f ( x , y ) dx P ( x X x dx | y Y y dy ) ,    X Y P ( y Y y dy ) 0 12    Conditional CDF of X given Y (where f Y ( y ) > 0):     x ( 2 x y ) x ( 2 x y ) x ( 2 x y )  5     a  1 1     ( | ) ( | ) ( | )   1 F a y P X a Y y f x y dx 12     3 2 x x y x ( 2 x y ) dx x ( 2 x y ) dx 2   | | x X Y X Y 5 3 2   0 0 0  Note: Even though P(Y = a ) = 0, can condition on Y = a     x ( 2 x y ) 6 x ( 2 x y )     a / 2           2 y  o Really considering: P ( a Y a ) f ( y ) dy f ( a )  4 3 y 2 2 Y 3 2   a / 2 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend