1 math 3 so solu lutio tion n of of fi firs rst t or orde
play

1 math(3) So Solu lutio tion n of of fi firs rst t or - PowerPoint PPT Presentation

1 math(3) So Solu lutio tion n of of fi firs rst t or orde der r ode ode 2 math(3) Preface The first order differential equations may appear in one of the following forms: dy dx f x y ( , ) dy F


  1. 1 math(3)

  2. So Solu lutio tion n of of fi firs rst t or orde der r ode ode 2 math(3)

  3. Preface The first order differential equations may appear in one of the following forms: dy dx  f x y ( , )    dy   F x y dx , , 0     M x y dx ( , ) N x y dy ( , ) 0 3 math(3)

  4. Methods of Solution of First Order ODE (1) Separable Differential Equations: dy g x ( )   dy      dx  h y dy ( ) g x dx ( ) c f x y ( , ) dx h y ( )            a x b y dx c x d y dy ( ) 0 M x y dx ( , ) N x y dy ( , ) 0 4 math(3)

  5. Separable Differential Equations A separable differential equation can be expressed as the product of a function of x and a function of y . dy       dx   h y  g x h y 0 Example: Multiply both sides by dx and divide dy dx  2 2 xy both sides by y 2 to separate the variables. (Assume y 2 is never zero.) dy y  2 x dx 2   2 y dy 2 x dx math(3) 5

  6. Separable Differential Equations A separable differential equation can be expressed as the product of a function of x and a function of y . dy       dx   h y  g x h y 0 Example:     2 y dy 2 x dx dy dx  2 2 xy Combined      1 2 y C x C constants of 1 2 integration dy 1 y     2 2 x dx x C 2 y 1 1     y y   2  y dy 2 x dx  2 2 x C x C math(3) 6 

  7. Initial conditions • In many physical problems we need to find the particular solution that satisfies a condition of the form y(x 0 )=y 0 . This is called an initial condition , and the problem of finding a solution of the differential equation that satisfies the initial condition is called an initial-value problem . math(3) 7

  8. Example:   dy dx   2 2 x 2 x 1 y e Separable differential equation 1  2 x dy 2 x e dx  2 1 y  1 2   u x  2 x dy 2 x e dx  2  1 y du 2 x dx 1    u dy e du  2 1 y     1 u tan y C e C 1 2    2  1 x tan y C e C 1 2   2  math(3) 8 1 x tan y e C  Combined constants of integration

  9. Example (cont.):   dy dx   2 2 x 2 x 1 y e   2  1 x tan y e C We now have y as an implicit function of x .       2  1 x We can find y as an explicit tan tan y tan e C function of x by taking the tangent   of both sides.  2  x y tan e C math(3) 9 

  10. Example dy       Solve the IVP x y 1 , e y 0 1 dx Solution dy  dy    x y 1  x y 1 e e e dx dx     x   1 y    x 1 y e e c e dx e dy c         x 0 y 1 1 1 c c 2 e     x 1 y e 2 0 10 math(3)

  11. Example   dy      2 2 x y 2 x xy 2 y x 2 Solve the DE dx Solution   dy 2  2     x y 2 x xy 2 y x 2 dx 2 (      x y 2) dy y x ( 2) ( x 2) dx 2 (     x y 2) dy ( x 2)( y 1) dx   1 1 2   y 2 x 2      1 1) dy dx c dy dx  2  ( y x x 2 y 1 x 2      y ln( y 1) ln x c x 11 math(3)

  12. (2) DE ’ s Reducible to Separable This type takes the form: dy dx    f ax ( by c )    u ax by c Put this transform the DE into separable one. 12 math(3)

  13. Example dy dx    2 Solve the DE (2 x y 7) Solution    l t e u 2 x y 7 differentiate w.r.t. x , we get: du   u   dx c  2 du dy 2   2     dx dx 1 tan u 1    x c du   dx   2 2 2 2 u      1 2 x y 7   1   tan x c du   dx   2 2 2 2 u 13 math(3)

  14. Example dy Solve the DE dx    sin( x y 1) Solution    l et u x y 1 du   u   differentiate w.r.t. x , we get: dx c  1 sin du dy   1  1 sin u du     dx dx dx c  2 1 sin u du dx   1 sin u       2 2 sec u (cos ) u sin u du dx c du dx     1   1 sinu tan u (cos u ) x c 14 math(3)

  15. (3) Homogeneous DE ’ s   dy y    f This type takes the form:   dx x The right hand side is a homogeneous function of degree zero. y  u x This transform the DE into separable one. 15 math(3)

  16. Example y y dy dy y dx     x x Solve the DE: x y x e e dx x Solution y    l et u y u x x du dx  u x e differentiate w.r.t. x , we get: 1 dy du        u e du dx c u x x dx dx     du u    u e ln x c u x u e dx 16 math(3)

  17. Example y  1  dy dy x y x   Solve the DE: y  dx  dx x y 1 x Solution y     du 1 u l et u y u x   x u x  dx 1 u differentiate w.r.t. x , we get:    2 du 1 u u u  x dx  dy du 1 u   u x  1 u du 1 dx dx     dx c   2 1 u x du 1 u   u x dx   1       1 u 1 2 tan u ln 1 u ln x c 2 17 math(3)

  18. example The slope m of a curve is 0 where the curve 𝟐 + 𝒛 𝟑 . Find m as a 𝒆𝒛 crosses the y-axis, and 𝒆𝒚 = function of x. SOLUTION 𝑒𝑧 1+𝑧 2 = 𝑒𝑦 Integrate both sides 𝑒𝑧 𝒕𝒋𝒐𝒊 −𝟐 (y)=x+c 1+𝑧 2 = 𝒆𝒚 + 𝒅 y=0 at x=0 then c=0 and y=sinh(x) 18 math(3)

  19. 19 math(3)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend