1 image classification
play

1 Image Classification BVM 2018 Tutorial: Advanced Deep Learning - PowerPoint PPT Presentation

1 Image Classification BVM 2018 Tutorial: Advanced Deep Learning Methods Jakob Wasserthal, Division of Medical Image Computing Author Division Classification of skin cancer 02.11.16 | vs Esteva et al., Dermatologist-level classification of


  1. 1 Image Classification BVM 2018 Tutorial: Advanced Deep Learning Methods Jakob Wasserthal, Division of Medical Image Computing

  2. Author Division Classification of skin cancer 02.11.16 | vs Esteva et al., Dermatologist-level classification of skin cancer with deep neural networks, Nature, 2017 | Jakob Wasserthal 2

  3. Author Division Classification of skin cancer 02.11.16 | vs benign malignant Esteva et al., Dermatologist-level classification of skin cancer with deep neural networks, Nature, 2017 | Jakob Wasserthal 3

  4. Author Division Classification 02.11.16 | p(benign) 0.98 p(malignant) 0.02 | Jakob Wasserthal 4

  5. Author Division ILSVRC challenge / ImageNet 02.11.16 | top-5 
 second best 
 error 26.2% AlexNet 
 15.3% ZFNet 
 11.2% VGG 
 GoogLeNet 
 7.3% 6.67% Human 
 5.1% ResNet 
 Inception v3 
 DenseNet 
 3.57% 3.5% ~3.5% 2012 2013 2014 2015 2017 | Jakob Wasserthal 5

  6. Author Division ILSVRC challenge / ImageNet 02.11.16 | top-5 
 second best 
 error 26.2% AlexNet 
 15.3% ZFNet 
 11.2% VGG 
 GoogLeNet 
 7.3% 6.67% Human 
 5.1% ResNet 
 Inception v3 
 DenseNet 
 3.57% 3.5% ~3.5% 2012 2013 2014 2015 2017 | Jakob Wasserthal 6

  7. Author Division VGG 02.11.16 | - simple structure - 160M parameters Simonyan et al.,Very deep convolutional networks for 
 large-scale image recognition, arXiv, 2014 He et al., Deep Residual Learning for Image Recognition, arXiv, 2015 | Jakob Wasserthal 7

  8. Author Division ILSVRC challenge / ImageNet 02.11.16 | top-5 
 second best 
 error 26.2% AlexNet 
 15.3% ZFNet 
 11.2% VGG 
 GoogLeNet 
 7.3% 6.67% Human 
 5.1% ResNet 
 Inception v3 
 DenseNet 
 3.57% 3.5% ~3.5% 2012 2013 2014 2015 2017 | Jakob Wasserthal 8

  9. Author Division GoogLeNet 02.11.16 | Inception module Szegedy et al., Going Deeper with Convolutions, arXiv, 2014 | Jakob Wasserthal 9

  10. Author Division GoogLeNet 02.11.16 | stride=1 Szegedy et al., Going Deeper with Convolutions, arXiv, 2014 | Jakob Wasserthal 10

  11. [Width x Height x Nr of Filters] Author Division GoogLeNet 02.11.16 | WxHx(256+256+256+256) = WxHx1024 WxHx256 WxHx256 WxHx256 WxHx256 stride=1 WxHx256 Szegedy et al., Going Deeper with Convolutions, arXiv, 2014 | Jakob Wasserthal 11

  12. [Width x Height x Nr of Filters] Author Division GoogLeNet 02.11.16 | WxHx(256+256+256+256) = WxHx1024 WxHx256 WxHx256 WxHx256 WxHx256 stride=1 WxHx256 WxHx(128+192+96+64) = WxHx480 WxHx192 WxHx96 WxHx64 WxHx128 WxHx128 WxHx32 WxHx256 stride=1 WxHx256 Szegedy et al., 2014 | Jakob Wasserthal 12

  13. Author Division GoogLeNet 02.11.16 | VGG GoogLeNet Data #Parameters dimensions Data #Parameters dimensions 1000*1024=1M 1000 14x14x512 7x 7x512=25.088 1x1x1024 4094 25088*4094=102M 7x7x1024 Szegedy et al., Going Deeper with Convolutions, arXiv, 2014 | Jakob Wasserthal 13

  14. Author Division GoogLeNet 02.11.16 | Inception module - 4M parameters (VGG: 160M) - 22 trained layers Szegedy et al., Going Deeper with Convolutions, arXiv, 2014 | Jakob Wasserthal 14

  15. Author Division Inception v3 - Improvement 1 02.11.16 | Parameters: 5x5-convolution: 5*5=25 2* 3x3-convolution: 2* (3*3)=18 => ~30% less parameters and 
 computations Szegedy et al., Rethinking the Inception Architecture for Computer Vision, arXiv, 2015 | Jakob Wasserthal 15

  16. Author Division Inception v3 - Improvement 1 02.11.16 | Szegedy et al., Rethinking the Inception Architecture for Computer Vision, arXiv, 2015 | Jakob Wasserthal 16

  17. Author Division Inception v3 - Improvement 2 02.11.16 | Parameters: 3x3-convolution: 3*3=9 2* 1x3-convolution: 2* (1*3)=6 => ~33% less parameters and 
 computations Szegedy et al., Rethinking the Inception Architecture for Computer Vision, arXiv, 2015 | Jakob Wasserthal 17

  18. Author Division Inception v3 - Improvement 2 02.11.16 | Szegedy et al., Rethinking the Inception Architecture for Computer Vision, arXiv, 2015 | Jakob Wasserthal 18

  19. Author Division Inception v3 - Improvement 3 02.11.16 | Representational 3x more computations bottleneck Szegedy et al., Rethinking the Inception Architecture for Computer Vision, arXiv, 2015 | Jakob Wasserthal 19

  20. Author Division Inception v3 - Improvement 3 02.11.16 | Representational - No bottleneck 3x more computations bottleneck - 1x computations Szegedy et al., Rethinking the Inception Architecture for Computer Vision, arXiv, 2015 | Jakob Wasserthal 20

  21. Author Division Inception v3 - Improvement 3 02.11.16 | Optimised Inception module Szegedy et al., Rethinking the Inception Architecture for Computer Vision, arXiv, 2015 | Jakob Wasserthal 21

  22. Author Division Inception v3 02.11.16 | - 3.5% top-5 error - 42 Layers - 2.5x number of parameters of GoogLeNet Szegedy et al., Rethinking the Inception Architecture for Computer Vision, arXiv, 2015 | Jakob Wasserthal 22

  23. Author Division ILSVRC challenge / ImageNet 02.11.16 | top-5 
 second best 
 error 26.2% AlexNet 
 15.3% ZFNet 
 11.2% VGG 
 GoogLeNet 
 7.3% 6.67% Human 
 5.1% ResNet 
 Inception v3 
 DenseNet 
 3.57% 3.5% ~3.5% 2012 2013 2014 2015 2017 | Jakob Wasserthal 23

  24. Author Division Classification of skin cancer 02.11.16 | - Inception v3 pretained on ImageNet - Dermatologist-level accuracy Esteva et al., Dermatologist-level classification of skin cancer with deep neural networks, Nature, 2017 | Jakob Wasserthal 24

  25. Author Division Classification of diabetic retinopathy 02.11.16 | - Inception v3 pretained on ImageNet - Expert-level accuracy Gulshan et al., Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs, JAMA, 2016 | Jakob Wasserthal 25

  26. Author Division ILSVRC challenge / ImageNet 02.11.16 | top-5 
 second best 
 error 26.2% AlexNet 
 15.3% ZFNet 
 11.2% VGG 
 GoogLeNet 
 7.3% 6.67% Human 
 5.1% ResNet 
 Inception v3 
 DenseNet 
 3.57% 3.5% ~3.5% 2012 2013 2014 2015 2017 | Jakob Wasserthal 26

  27. Author Division ResNet 02.11.16 | He et al., Deep Residual Learning for Image Recognition, arXiv, 2015 | Jakob Wasserthal 27

  28. Author Division ResNet 02.11.16 | He et al., Deep Residual Learning for Image Recognition, arXiv, 2015 | Jakob Wasserthal 28

  29. Author Division ResNet 02.11.16 | - 152 Layers | Jakob Wasserthal 29

  30. Author Division ResNet 02.11.16 | He et al., Deep Residual Learning for Image Recognition, arXiv, 2015 | Jakob Wasserthal 30

  31. Author Division ILSVRC challenge / ImageNet 02.11.16 | top-5 
 second best 
 error 26.2% AlexNet 
 15.3% ZFNet 
 11.2% VGG 
 GoogLeNet 
 7.3% 6.67% Human 
 5.1% ResNet 
 Inception v3 
 DenseNet 
 3.57% 3.5% ~3.5% 2012 2013 2014 2015 2017 | Jakob Wasserthal 31

  32. Author Division DenseNet 02.11.16 | Huang et al., Densely Connected Convolutional Networks, CVPR, 2017 | Jakob Wasserthal 32

  33. Author Division DenseNet 02.11.16 | Huang et al., Densely Connected Convolutional Networks, CVPR, 2017 | Jakob Wasserthal 33

  34. Author Division Challenges in medical image classification 02.11.16 | - few training data - no RGB images - small lesions - big images - interpretability Source: The Radiology Assistant : Bi-RADS for Mammography and Ultrasound 2013 | Jakob Wasserthal 34

  35. Author Division Interpretability of predictions 02.11.16 | ? p(diabetic) 0.98 p(normal) 0.02 A deep neural network is often considered as a “black box”. | Jakob Wasserthal 35

  36. Author Division Interpretability of predictions 02.11.16 | “What parts of the input image affect the decision?” Gulshan et al., Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs, 2016 | Jakob Wasserthal 36

  37. Author Division Recap: Training via Backpropagation 02.11.16 | w ij x p dog (x) 0.98 p cat (x) 0.02 dc c = − log ( p dog ( x )) dw ij Slides by courtesy of Paul Jäger | Jakob Wasserthal 37

  38. Author Division Saliency maps 02.11.16 | “What parts of the input image affect the decision?” x ij p dog (x) 0.98 p cat (x) 0.02 dp dog ( x ) “backprop into image”: dx ij Slides by courtesy of Paul Jäger | Jakob Wasserthal 38

  39. Author Division Saliency maps 02.11.16 | dp dog ( x ) x ij dx ij Slides by courtesy of Paul Jäger | Jakob Wasserthal 39

  40. Author Division Interpretability of predictions 02.11.16 | Jamaludin et al., SpineNet: Automated classification and evidence visualization in spinal MRIs, Medical image analysis, 2017 | Jakob Wasserthal 40

  41. Author Division 02.11.16 | Questions | Jakob Wasserthal 41

  42. Author Division 02.11.16 | Backup | Jakob Wasserthal 42

  43. Author Division Advanced: Saliency via Perturbation 02.11.16 | “Interpretable Explanations of Black Boxes by Meaningful Perturbation” Ruth et al., arXiv, 2018 Trick: Backprop into a mask d [ w ∗ ( x ∗ m )] m multiplied with the image to = w ∗ x be the “minimal destroying dm region”. | Jakob Wasserthal 43

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend