1 2 lt e lt e 2 gt f
play

1,2 <E <E 2 > f ( c , - PDF document

Paramagnetic metalloproteins Paramagnetic metalloproteins Nuclear relaxation due to the Nuclear relaxation due to the electron electron-nucleus dipolar coupling nucleus dipolar coupling Solomon equations Solomon equations In paramagnetic


  1. Paramagnetic metalloproteins Paramagnetic metalloproteins Nuclear relaxation due to the Nuclear relaxation due to the electron electron-nucleus dipolar coupling nucleus dipolar coupling Solomon equations Solomon equations In paramagnetic systems: µ S =658.2 µ I Dipole-dipole interaction: τ c � 3 ( )( ) � µ µ µ µ µ ⋅ r µ µ µ µ ⋅ r µ µ µ µ ⋅ µ µ µ µ dip 0 1 2 1 2 E = − − 2 � � � � 2 � � 2 2 2 ( 1 ) 7 3 µ γ µ + τ τ g S S 5 3 4 � � � 0 � π = I e B � c + c � µ S r r R 1 M 15 � 4 � 6 1 2 2 1 2 2 π � + ω τ + ω τ � r S c I c µ I 1 E cont ∝ A c � S z � µ I 2 2 2 2 2 ( ) � � 1 � � 1 13 3 µ γ g µ S S + τ τ Relaxation rates: 0 � � I e B � 4 c c � R = τ + + 2 M 15 � 4 � 6 c 1 2 2 1 2 2 π r � + ω τ + ω τ � S c I c 1,2 ∝ ∝ ∝ ∝ ∝ ∝ ∝ <E ∝ <E 2 > f ( τ τ τ τ τ τ c τ τ , ω ω ω ) ω ω ω ω ω R 1,2 c , 1 1 1 1 − − − − τ = τ + τ + τ c s r M Paramagnetic metal ions Paramagnetic metal ions � They increase nuclear relaxation µ S / µ I 1 ∆ν = π � � � � linewidth R 2 M Negligible paramagnetic effects µ I 2 � They decrease the intensity of NOEs (if observed at all!) cross relaxation rate, σ 1 ( 2 ) i.e. the magnetization I I η = transfer from the nucleus I 2 1 ( 2 ) I I ρ + ρ + R to the nucleus I 1 when I 2 is 1 ( 2 ) 1 (other) 1 M I I I saturated Blind sphere longitudinal relaxation of nucleus I due to the coupling with other nuclei The hyperfine shift The hyperfine shift 1 H- 15 N HSQC Restraint: 124 15 N) (ppm) - contact 126 PCS= δ ( r , ϑ , ϕ ) δ 1 ( 128 8.4 8.3 8.2 8.1 - pseudocontact δ 2 ( 1 H) (ppm) 1 H- 15 N HSQC IPAP 124 10 10 5 0 15 N) (ppm) PRDC= ∆ ν ( Θ , Φ ) δ δ δ δ δ δ δ (ppm) δ (ppm) 94 Hz 114 Hz 126 δ 1 ( 128 8.4 8.3 8.2 8.1 δ 2 ( 1 H) (ppm) 1 H- 15 N HSQC 124 Metal ion 15 N) (ppm) PRE= R 1M ( r ) 126 δ 1 ( 128 8.4 8.3 8.2 8.1 δ 2 ( 1 H) (ppm) 60 60 55 55 50 50 45 45 40 40 35 35 30 30 25 25 20 20 15 15 10 10 5 0 δ (ppm) δ δ δ δ δ δ δ (ppm) 1

  2. Magnetic moments and magnetic fields Magnetic moments and magnetic fields Average magnetic moment Average magnetic moment ∆ E = g µ B = � γ B ∆ E = g e µ B 0 0 0 N N N B g � � I � γ � = γ I = − µ B g S N N I e 1.86 × 10 − 23 JT − 1 1 H 5.59 2.81 × 10 − 26 JT − 1 g µ = e B 0.86 0.43 2 H 5.96 2.99 g µ B g µ g µ 3 H e B 0 e B e B ω = = γ B = ω 13 C 1.40 0.71 S N 0 I B 0 � � � γ γ N N 0.40 0.20 <µ>≠0 14 N <µ>=0 15 N − 0.57 − 0.28 400 MHz 1 H Larmor frequency 31 P 2.26 1.14 = 263 GHz of electron Larmor frequency µ is 658 times larger than µ I B 0 � = − µ B g S e ∆ E = g e µ B m S =±½ 0 B < µ >= − µ < > g S B e z Paramagnetic susceptibility Paramagnetic susceptibility Curie law Curie law Paramagnetic systems: < µ >= − µ < > g S B e z � ( ) , | | , exp / < S M S S M > − E kT , S z S S M B 0 z S z , B 0 S M S < S >= � ( ) z < µ µ µ > µ exp / − E kT , S M � ⋅ S E = B ∆ E = g e µ B , m S =±½ 0 S M B S Zeeman 0 y y E = g µ M B Zeeman energy of the level m S = − 1/2 , 0 x x S M e B S S if no contribution from the orbital magnetic moment χ B 0 P1/P0=exp(- ∆ E/kT) < µ >= 1.86 ·10 -23 ·20/2 <<1.38·10 -23 ·298 If g e µ B B 0 M S << kT µ g µ B 0 0 ( 1 ) e B < S >= − S S + z 3 χ = paramagnetic susceptibility per molecule, kT � B � 0 < > = independent on B 0 and positive � 0 µ < µ > µ 0 2 2 0 ( 1 ) χ = = µ g S S + Curie law: B e 3 B kT 0 Magnetic susceptibility anisotropy Magnetic susceptibility anisotropy Average magnetic moment Average magnetic moment In systems that are orbitally non-degenerate, the anisotropy If the orbital magnetic moment is considered, χ χ is anisotropic χ χ can be represented by an anisotropy of the g -factor χ χ χ χ ⋅ B � ( ) | | 1 / � 0 < φ L + g S φ > − E kT < > = i kk e kk i i kk µ i < µ >= − µ < >= − µ 0 g S � ( ) kk B kk kk B 1 / − E kT i kk B z i g kk µ M B E i kk = 0 < µ µ > is NOT PARALLEL to B 0 | | B S µ µ < φ + φ >= L g S g M B 0 kk e kk kk S Zeeman energy < µ > z < µ > is orientation dependent ( 1 ) + S S 2 2 χ = µ µ g kk 0 kk B 3 < µ µ > µ µ kT Valid with only one thermally populated multiplet of spin number S B x < µ > x NO zero field splitting 2

  3. Van Vleck equation Van Vleck equation The origin of contact shifts The origin of contact shifts if the total energy of the system E 0 >> Zeeman energy Contact shift ontact shift : c : contribution to the ontribution to the E 0 = zero field splitting and ligand field energy chemical shift due to the unpaired chemical shift due to the unpaired � 2 � electron spin electron spin density density on the resonating on the resonating 2 | | | | < φ L + g S φ > � < φ L + g S φ > � � � ( ) i kk e kk j 0 i kk e kk i 2 exp / − − E kT � 0 0 � i kT − nucleus nucleus E E � ≠ � i j i i j 2 χ = µ µ � 0 ( ) kk B 0 exp / − E kT i The coupling constant between nucleus and e - I 1 …e - is called A i � the interaction is expressed by Energies of ground and H = A I ⋅ S excited states A: contact hyperfine contact hyperfine c coupling proportional to the spin oupling proportional to the spin are anisotropic < S >∝< µ >∝ χ density of the resonating nucleus density of the resonating nucleus z Contact shifts Contact shifts Electronic configuration of Electronic configuration of III Heme LS Fe III ( 1 ) LS Fe Heme S S + B 0 < >= − µ S g = A I ⋅ S H z B e 3 kT H.M. McConnell, D.B. Chesnut, J.Chem.Phys. 1958 , 28 , 107-117 N y x φ φ φ φ C N N 3 Fe N N 1 d xz I II - φ φ φ φ θ 3 g xx N d yz π π π π d xy Kurland and McGarvey (1970) predict that < S i > and hence contact N C 2 shift may be orientation dependent due to spin-orbit coupling IV III 8 5 R.J. Kurland, B.R. McGarvey, J.Magn.Reson. 1970 , 2 , 286-301 Contact shift restraints: Contact shift restraints: unpaired electron spin density unpaired electron spin density Calculated vs. observed shifts of methyl Calculated vs. observed shifts of methyl on heme nuclei is a function of axial ligand orientation on heme nuclei is a function of axial ligand orientation protons in histidine protons in histidine-cyanide cytochromes cyanide cytochromes Methyl protons in histidine cytochromes (Low spin Fe(III)) Low spin Fe(III)) 8-CH 3 5-CH 3 1-CH 3 3-CH 3 M80A cyano-cytochrome c N N Fe N y x φ φ φ φ From the fit of the methyl shifts: φ = 57 o ± 9 o 18 . 4 sin 2 ( ) 0 . 8 cos 2 ( ) 6 . 1 δ = θ − φ − θ + φ + i i i 3 Bren, Gray, Banci, Bertini, Turano J.Am.Chem.Soc. (1995) 1 I II - φ φ φ φ θ 49 o 3 g xx φ = Banci, Bertini at al. JBIC (1996) structure π π π π I. Bertini, C. Luchinat, G. Parigi, F.A. Walker, JBIC 1999 III IV 8 5 3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend