0 mixing 0 d d
play

0 mixing 0 D D K.Trabelsi ( KEK ) karim.trabelsi@kek.jp Flavor - PowerPoint PPT Presentation

0 mixing 0 D D K.Trabelsi ( KEK ) karim.trabelsi@kek.jp Flavor Physics & CP Violation 2013 May 19-24, 2013 Flavour Mixing in the Charm Sector Mass eigenstates flavour eigenstates m 1, 2 and 1, 2 are mass and width of |D 1, 2 >


  1. 0 mixing 0 − D D K.Trabelsi ( KEK ) karim.trabelsi@kek.jp Flavor Physics & CP Violation 2013 May 19-24, 2013

  2. Flavour Mixing in the Charm Sector Mass eigenstates ≠ flavour eigenstates m 1, 2 and Γ 1, 2 are mass and width of |D 1, 2 > 0 > ± q|D 0 > |D 1, 2 > = p |D p / q ≠ 1 ⇒ CP violation Long − distance contributions dominant, Short − distance contributions, affected by large theoretical uncertainties GIM and CKM suppressed in SM 0 system 0 − D Time evolution of a D with M and Γ being hermitian −(Γ/ 2 + i m ) t [ cosh ( y + ix p sinh ( y + ix 0 > + q 0 ( t ) > = e Solutions 0 > ] Γ t ) |D Γ t ) |D |D 2 2 q sinh ( y + ix 0 > + cosh ( y + ix −(Γ/ 2 + i m ) t [ p 0 ( t ) > = e 0 > ] Γ t ) |D Γ t ) |D |D 2 2 y = Γ 1 − Γ 2 x = m 1 − m 2 Mixing parameters , Γ D 2 Γ D Γ D = (Γ 1 + Γ 2 )/ 2

  3. 0 -D 0 mixing D 0 mixing is small ( |x|, |y | << 1 ) : ∘ Since D q ( y + ix 0 > + p −(Γ/ 2 + i m ) t [ |D 0 ( t ) > = e 0 > ] |D Γ t ) |D 2 0 → f: ∘ Time dependent decay rates of D d N D p ( y + ix 2 = e 0 > + q 0 → f 0 ( t ) >| −Γ t |<f|H |D 0 >| 2 ∝ |<f |H|D Γ t ) |<f |H|D dt 2 ∘ Exponential decay modulated with x and y d N D 0 → f x and y can be obtained from measured time dependence of dt ∘ Shape is final state dependent different final states sensitive to different combinations of x and y

  4. 0 -D 0 mixing − SM estimates D ( Joachim Brod ) Can express y = 1 2 Γ D ∑ n ρ n [ <D 0 |H|n ><n |H|D 0 > + < D 0 |H|n ><n|H|D 0 > ] 0 |H|n ><n |H|D 0 > + <D 0 |H|n >< n|H|D 0 > x = 1 <D 0 > + P ∑ n 0 |H|D Γ D [ <D ] 2 − E n 2 M D ''Inclusive approach '': ∘ OPE expansion in powers of '' Λ/ m c '' − 3 [ Georgi 1992; Ohl et al 1993; Bigi et al 2000 ] ∘ x ∼ y < 10 − 2 [ Bobrowski et al 2010 ] ∘ Cannot exclude y ∼ 10 ∘ Violation of quark - hadron duality ''Exclusive approach'': ∘ Sum over on-shell intermediate states − 3 [ Cheng et al 2010 ] ∘ Mainly D → PP, PV leads to x ∼ y < 10 − 2 [ Falk et al 2002 ] ∘ SU ( 3 ) F breaking in phase space alone leads to y ∼ 10 − 2 from a dispersion relation [ Falk et al 2004 ] ∘ Get x ∼ 10

  5. Experimental status at FPCP 2012 ( A.Di Canto ) From HFAG page: 0 → K + π − D E791 0 → h + h − D E791 0 → K + π − π 0 D 0 → K + π + 2 π − D 0 → K S 0 h + h − D 0 → K − ν + l E791 D 0 D 0 ψ ( 3770 ) → D = mixing probability >3 σ

  6. Experimental status at FPCP 2012 [ http://www.slac.stanford.edu/xorg/hfag/charm/March12 ] 0 system is well Mixing in the D established : significance ∼ 10 σ + 0.19 ) % x = ( 0.63 − 0.20 y = ( 0.75 ± 0.12 ) % SM predictions affected by large No mixing point uncertainties: theo ∼ O ( 10 theo , y − 2 -10 − 7 ) x [ see Joachim Brod 's compilation next slide ] Measurements of x and y are at the upper limits of SM, NP contributions (in short - distance diagrams) could at the 1% level e.g. [ Golowich et al ] x ≤ 0 excluded at 2.7 σ y ≤ 0 excluded at 6.0 σ

  7. Results discussed in this talk... From HFAG page: 0 → K + π E791 − D 0 → h + h − D E791 0 → K + π − π 0 D 0 → K + π + 2 π − D 0 → K S 0 h + h − D 0 → K − ν + l D E791 0 D 0 ψ ( 3770 ) → D = mixing probability >3 σ

  8. 0 → K + π + K − , π − Decays to CP-even eigenstates D − π + and D 0 → K + K + π − , π − Measurement of lifetime difference between D → K Timing distributions are exponential ( if CP is conserved ) ∘ mixing parameter: y CP = τ( K − π + ) − ) − 1 + h τ( h ∘ if CP conserved : y CP = y + π + K 0 / D 0 → K − , π − If CP is violated → difference in lifetimes of D 0 → h 0 → h − h − h + ) − τ( D + ) ∘ lifetime asymmetry : A Γ = τ( D 0 → h − h 0 → h − h + ) + τ( D + ) τ( D ∘ y CP = y cos ϕ − 1 2 A M x sin ϕ ϕ = arg ( q / p ) 2 ∘ A Γ = 1 A M = 1 − |q / p| 2 A M y cos ϕ − x sin ϕ [ S.Bergmann et al, PLB 486, 418 ( 2000 )]

  9. − 1 ) Experimental method ( update with 976 fb [ arXiv:1212.3478; M.Staric et al, PRL98, 211803 ( 2007 )] *+ → π + D 0 using D ∘ flavor tagging by the charge of π slow ∘ background suppression 0 proper decay time measurement : D p D t = l dec 0 βγ = c βγ , M D extrapolate production vtx 0 ∘ decay time uncertainty σ t ( calculated from vtx err matrices ) CMS > 2.5 ( 3.1 ) GeV / c Υ( 4S ) (Υ( 5S )) *+ from B decays: p D *+ To reject D Observables: ∘ m = m ( K π) ∘ q = m ( K ππ s ) − m ( K π) − m π

  10. 0 → K + π + K − , π − Decays to CP-even eigenstates D [ arXiv:1212.3478 ] ∘ Analysis cuts: m, q, σ t optimized on tuned Monte Carlo figure of merit: statistical error on y CP ∘ Background estimated from sidebands in m sideband position optimized ∘ Signal yields ( purities ) entering the measurement: K π π π channel KK Yield 242k 2.61M 114k Purity 98.0% 99.7% 92.9%

  11. 0 → K + π + K − , π − Decays to CP-even eigenstates D [ arXiv:1212.3478 ] + π + π + K − samples − , K − , π simultaneous binned fit to K * sum of histograms and fitted function over cos θ 0 CMS angle (θ * ) , fit is performed in bins of cos θ * ] [ as resolution function depends on D SVD1 3- layer SVD − 1 153 fb SVD2 4 -layer SVD − 1 823 fb

  12. 0 → K + π + K − , π − Decays to CP-even eigenstates D [ arXiv:1212.3478 ] 0 CMS angle (θ * ) , fit is performed in bins of cos θ * ] [ as resolution function depends on D SVD2 4 -layer SVD − 1 823 fb τ = 408.56 ± 0.54 stat y CP = (+ 1.11 ± 0.22 ± 0.11 ) % Results ( preliminary ) − 1 A Γ = (− 0.03 ± 0.20 ± 0.08 ) % with 976 fb − 1 Belle, 540 fb ∘ y CP is at 4.5 σ when both errors are combined in quadrature y CP = (+ 1.31 ± 0.32 ± 0.25 ) % A Γ = (+ 0.01 ± 0.30 ± 0.15 ) % and at 5.1 σ if only statistical error is considered ∘ A Γ is consistent with no indirect CP violation divide distributions

  13. 0 → K + π + K − , π − Decays to CP-even eigenstates D [ J.P. Lees et al, PRD87, 012004 ( 2013 ) , arXiv:1209.3896 ] Simultaneous fit to 7 signal channels: 0 π 0 π + , D + K + K − ;D − , D − ; *+ → D 0 → K *- → D 0 → K ∘ flavour tagged: D 0 π + π 0 π + π + , D − ;D − , D − ; D ± π ∓ *+ → D 0 →π *- → D 0 →π * → D π , D → K D ± π + K flavour untagged − , D → K ∓ ∘ flavour untagged : D → K 500k 74.4 % flavour tagged 2 × 32k 2 × 65k 1.5M 5.8M 94.4 % 99.3% 99.8% 84.7%

  14. 0 → K + π + K − , π − Decays to CP-even eigenstates D [ J.P. Lees et al, PRD87, 012004 ( 2013 ) , arXiv:1209.3896 ] ∘ Charm background: Small component ( < 0.7% ) , misreconstructed charm decays, not separated in the mass fit Lifetime fit PDFs and yields extracted from MC in the signal region flavour untagged ∘ Combinatorial background : Main component, random tracks 500k Lifetime fit PDFs extracted from data outside the signal region 74.4 % + K − ) are extracted from Lifetime fit yields ( not for untagged K data in the signal region ( integral of bkg PDF minus the charm bkg yields from MC) flavour tagged 2 × 32k 2 × 65k 1.5M 5.8M 94.4 % 99.3% 99.8% 84.7%

  15. 0 → K + π + K − , π − Decays to CP-even eigenstates D [ J.P. Lees et al, PRD87, 012004 ( 2013 ) , arXiv:1209.3896 ] ∘ Signal: properly normalized 2d conditional PDF ( t , σ t ) ∘ Lifetime 2d fit in the signal region only CP + eigenstates CP mixed states CP + lifetimes + = ( 405.69 ± 1.25 ) fs τ + = ( 406.40 ± 1.25 ) fs τ 0 lifetime D τ K π = ( 408.97 ± 0.24 ) fs

  16. 0 → K + π + K − , π − Decays to CP-even eigenstates D [ J.P. Lees et al, PRD87, 012004 ( 2013 ) , arXiv:1209.3896 ] 0 lifetime D τ K π = ( 408.97 ± 0.24 ) fs CP + lifetimes + = ( 405.69 ± 1.25 ) fs τ + = ( 406.40 ± 1.25 ) fs τ − 1 Results with 468 fb y CP = (+ 0.72 ± 0.18 ± 0.12 ) % A Γ = (+ 0.09 ± 0.26 ± 0.06 ) % Exclude no mixing at 3.3 σ − 1 BaBar , 384 fb y CP = (+ 1.16 ± 0.22 ± 0.18 ) % ( 0.866 ± 0.155 ) % A Γ = (+ 0.26 ± 0.36 ± 0.08 ) % previous value: ( 1.064 ± 0.209 ) %

  17. 0 π + π − time-dependent Daliz analysis D → K S 0 3 body self -conjugated decays, Dalitz analysis can be performed: ∘ For D 0 → K S 0 π + π 2 , m + − , decay amplitude A ( m − 2 ) e.g. in D 2 ≡ m K S 2 ≡ m K S where m − 0 π − , m + 0 π + ∘ In CP conservation assumption, A = A and q / p = 1 BaBar Distribution of events across Dalitz 0 ) space vs t ( D Variation → signature of mixing sensitivity to x and y comes mainly from regions with: − interferences of CF and DCS − CP eigenstates Simultaneous determination Example of mean lifetime in different regions of the DP of x and y

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend