the a class of weights and some of its extensions carlos
play

The A class of weights and some of its extensions Carlos P erez - PowerPoint PPT Presentation

The A class of weights and some of its extensions Carlos P erez University of the Basque Country and BCAM Probability and Analysis 2019 Banach Center for Mathematics Be dlewo, May 22, 2019 The C p class of weights


  1. The C p class of weights cperez@bcamath.org Quantitative versions of the A ∞ thm

  2. The C p class of weights cperez@bcamath.org Quantitative versions of the A ∞ thm If 1 ≤ q < ∞ , � Tf � L 1 ( w ) � [ w ] A q � Mf � L 1 ( w )

  3. The C p class of weights cperez@bcamath.org Quantitative versions of the A ∞ thm If 1 ≤ q < ∞ , � Tf � L 1 ( w ) � [ w ] A q � Mf � L 1 ( w ) • There is a much better result:

  4. The C p class of weights cperez@bcamath.org Quantitative versions of the A ∞ thm If 1 ≤ q < ∞ , � Tf � L 1 ( w ) � [ w ] A q � Mf � L 1 ( w ) • There is a much better result: Thm If p ∈ (0 , ∞ ) , � Tf � L p ( w ) � max { 1 , p } [ w ] A ∞ � Mf � L p ( w )

  5. The C p class of weights cperez@bcamath.org Quantitative versions of the A ∞ thm If 1 ≤ q < ∞ , � Tf � L 1 ( w ) � [ w ] A q � Mf � L 1 ( w ) • There is a much better result: Thm If p ∈ (0 , ∞ ) , � Tf � L p ( w ) � max { 1 , p } [ w ] A ∞ � Mf � L p ( w ) Recall, we are using here the following constant:

  6. The C p class of weights cperez@bcamath.org Quantitative versions of the A ∞ thm If 1 ≤ q < ∞ , � Tf � L 1 ( w ) � [ w ] A q � Mf � L 1 ( w ) • There is a much better result: Thm If p ∈ (0 , ∞ ) , � Tf � L p ( w ) � max { 1 , p } [ w ] A ∞ � Mf � L p ( w ) Recall, we are using here the following constant: 1 � [ w ] A ∞ = sup Q M ( wχ Q ) dx w ( Q ) Q

  7. The C p class of weights cperez@bcamath.org Key points

  8. The C p class of weights cperez@bcamath.org Key points • 1) The quantitative RHI

  9. The C p class of weights cperez@bcamath.org Key points • 1) The quantitative RHI Thm T. Hyt¨ onen and C. P. Let w ∈ A ∞ , then

  10. The C p class of weights cperez@bcamath.org Key points • 1) The quantitative RHI Thm T. Hyt¨ onen and C. P. Let w ∈ A ∞ , then 1 � � 1 ≤ 2 1+ δ � � Q w 1+ δ Q w | Q | | Q | where

  11. The C p class of weights cperez@bcamath.org Key points • 1) The quantitative RHI Thm T. Hyt¨ onen and C. P. Let w ∈ A ∞ , then 1 � � 1 ≤ 2 1+ δ � � Q w 1+ δ Q w | Q | | Q | where 1 δ = c n [ w ] A ∞

  12. The C p class of weights cperez@bcamath.org Key points • 1) The quantitative RHI Thm T. Hyt¨ onen and C. P. Let w ∈ A ∞ , then 1 � � 1 ≤ 2 1+ δ � � Q w 1+ δ Q w | Q | | Q | where 1 δ = c n [ w ] A ∞ • 2) The local exponential decay

  13. The C p class of weights cperez@bcamath.org Key points • 1) The quantitative RHI Thm T. Hyt¨ onen and C. P. Let w ∈ A ∞ , then 1 � � 1 ≤ 2 1+ δ � � Q w 1+ δ Q w | Q | | Q | where 1 δ = c n [ w ] A ∞ • 2) The local exponential decay � � �� y ∈ Q : | Tf ( y ) | > 2 t, Mf ( y ) ≤ t ε � � � � ≤ cε | Q |

  14. The C p class of weights cperez@bcamath.org Key points • 1) The quantitative RHI Thm T. Hyt¨ onen and C. P. Let w ∈ A ∞ , then 1 � � 1 ≤ 2 1+ δ � � Q w 1+ δ Q w | Q | | Q | where 1 δ = c n [ w ] A ∞ • 2) The local exponential decay � � �� y ∈ Q : | Tf ( y ) | > 2 t, Mf ( y ) ≤ t ε � � � � ≤ cε | Q | ≤ c e − c ε

  15. The C p class of weights cperez@bcamath.org More consequences: the A 1 theory

  16. The C p class of weights cperez@bcamath.org More consequences: the A 1 theory • w ∈ A 1 if M ( w ) ≤ [ w ] A 1 w

  17. The C p class of weights cperez@bcamath.org More consequences: the A 1 theory • w ∈ A 1 if M ( w ) ≤ [ w ] A 1 w Thm ( C.P., A. Lerner & S. Ombrosi ≈ 2009) Let w ∈ A 1 . a) Let 1 < p < ∞ . Then � T � L p ( w ) ≤ c pp ′ [ w ] A 1

  18. The C p class of weights cperez@bcamath.org More consequences: the A 1 theory • w ∈ A 1 if M ( w ) ≤ [ w ] A 1 w Thm ( C.P., A. Lerner & S. Ombrosi ≈ 2009) Let w ∈ A 1 . a) Let 1 < p < ∞ . Then � T � L p ( w ) ≤ c pp ′ [ w ] A 1 b) � T � L 1 ( w ) → L 1 , ∞ ( w ) ≤ c [ w ] A 1 log( e + [ w ] A 1 )

  19. The C p class of weights cperez@bcamath.org More consequences: the A 1 theory • w ∈ A 1 if M ( w ) ≤ [ w ] A 1 w Thm ( C.P., A. Lerner & S. Ombrosi ≈ 2009) Let w ∈ A 1 . a) Let 1 < p < ∞ . Then � T � L p ( w ) ≤ c pp ′ [ w ] A 1 b) � T � L 1 ( w ) → L 1 , ∞ ( w ) ≤ c [ w ] A 1 log( e + [ w ] A 1 ) • We thought that the correct result was linear, but it is false .

  20. The C p class of weights cperez@bcamath.org More consequences: the A 1 theory • w ∈ A 1 if M ( w ) ≤ [ w ] A 1 w Thm ( C.P., A. Lerner & S. Ombrosi ≈ 2009) Let w ∈ A 1 . a) Let 1 < p < ∞ . Then � T � L p ( w ) ≤ c pp ′ [ w ] A 1 b) � T � L 1 ( w ) → L 1 , ∞ ( w ) ≤ c [ w ] A 1 log( e + [ w ] A 1 ) • We thought that the correct result was linear, but it is false . • Adam Ose ¸kowski found a different interesting argument

  21. The C p class of weights cperez@bcamath.org More consequences: the A 1 theory • w ∈ A 1 if M ( w ) ≤ [ w ] A 1 w Thm ( C.P., A. Lerner & S. Ombrosi ≈ 2009) Let w ∈ A 1 . a) Let 1 < p < ∞ . Then � T � L p ( w ) ≤ c pp ′ [ w ] A 1 b) � T � L 1 ( w ) → L 1 , ∞ ( w ) ≤ c [ w ] A 1 log( e + [ w ] A 1 ) • We thought that the correct result was linear, but it is false . • Adam Ose ¸kowski found a different interesting argument • Lerner-Nazarov-Ombrosi: the result is sharp.

  22. The C p class of weights cperez@bcamath.org More praises:

  23. The C p class of weights cperez@bcamath.org More praises: • 1) Vector-valued extensions

  24. The C p class of weights cperez@bcamath.org More praises: • 1) Vector-valued extensions Thm Let p, q ∈ (0 , ∞ ) and w ∈ A ∞ . Then

  25. The C p class of weights cperez@bcamath.org More praises: • 1) Vector-valued extensions Thm Let p, q ∈ (0 , ∞ ) and w ∈ A ∞ . Then � 1 � 1 � � � � � � � � q q � � � � ( Tf j ) q ( Mf j ) q ≤ C � � � � � � � � � L p ( w ) � L p ( w ) � � j j

  26. The C p class of weights cperez@bcamath.org More praises: • 1) Vector-valued extensions Thm Let p, q ∈ (0 , ∞ ) and w ∈ A ∞ . Then � 1 � 1 � � � � � � � � q q � � � � ( Tf j ) q ( Mf j ) q ≤ C � � � � � � � � � L p ( w ) � L p ( w ) � � j j and � 1 � 1 � � � � � � � � q q � � � � ( Tf j ) q ( Mf j ) q ≤ C � � � � � � � � � L p, ∞ ( w ) � L p, ∞ ( w ) � � j j

  27. The C p class of weights cperez@bcamath.org More praises: • 1) Vector-valued extensions Thm Let p, q ∈ (0 , ∞ ) and w ∈ A ∞ . Then � 1 � 1 � � � � � � � � q q � � � � ( Tf j ) q ( Mf j ) q ≤ C � � � � � � � � � L p ( w ) � L p ( w ) � � j j and � 1 � 1 � � � � � � � � q q � � � � ( Tf j ) q ( Mf j ) q ≤ C � � � � � � � � � L p, ∞ ( w ) � L p, ∞ ( w ) � � j j • 2) Sawyer’s problem where one of the key results is

  28. The C p class of weights cperez@bcamath.org More praises: • 1) Vector-valued extensions Thm Let p, q ∈ (0 , ∞ ) and w ∈ A ∞ . Then � 1 � 1 � � � � � � � � q q � � � � ( Tf j ) q ( Mf j ) q ≤ C � � � � � � � � � L p ( w ) � L p ( w ) � � j j and � 1 � 1 � � � � � � � � q q � � � � ( Tf j ) q ( Mf j ) q ≤ C � � � � � � � � � L p, ∞ ( w ) � L p, ∞ ( w ) � � j j • 2) Sawyer’s problem where one of the key results is Let u ∈ A 1 ( R n ) and v ∈ A ∞ ( R n ) . Then Thm

  29. The C p class of weights cperez@bcamath.org More praises: • 1) Vector-valued extensions Thm Let p, q ∈ (0 , ∞ ) and w ∈ A ∞ . Then � 1 � 1 � � � � � � � � q q � � � � ( Tf j ) q ( Mf j ) q ≤ C � � � � � � � � � L p ( w ) � L p ( w ) � � j j and � 1 � 1 � � � � � � � � q q � � � � ( Tf j ) q ( Mf j ) q ≤ C � � � � � � � � � L p, ∞ ( w ) � L p, ∞ ( w ) � � j j • 2) Sawyer’s problem where one of the key results is Let u ∈ A 1 ( R n ) and v ∈ A ∞ ( R n ) . Then Thm � T ∗ ( fv ) � M ( fv ) � � � � � L 1 , ∞ ( uv ) ≤ c � � � � � L 1 , ∞ ( uv ) v v

  30. The C p class of weights cperez@bcamath.org More praises: • 1) Vector-valued extensions Thm Let p, q ∈ (0 , ∞ ) and w ∈ A ∞ . Then � 1 � 1 � � � � � � � � q q � � � � ( Tf j ) q ( Mf j ) q ≤ C � � � � � � � � � L p ( w ) � L p ( w ) � � j j and � 1 � 1 � � � � � � � � q q � � � � ( Tf j ) q ( Mf j ) q ≤ C � � � � � � � � � L p, ∞ ( w ) � L p, ∞ ( w ) � � j j • 2) Sawyer’s problem where one of the key results is Let u ∈ A 1 ( R n ) and v ∈ A ∞ ( R n ) . Then Thm � T ∗ ( fv ) � M ( fv ) � � � � � L 1 , ∞ ( uv ) ≤ c � � � � � L 1 , ∞ ( uv ) v v • (work with D. Cruz-Uribe, JM Martell).

  31. The C p class of weights cperez@bcamath.org The C p condition

  32. The C p class of weights cperez@bcamath.org The C p condition Recall the A ∞ theorem

  33. The C p class of weights cperez@bcamath.org The C p condition Recall the A ∞ theorem � T ∗ f � L p ( w ) ≤ c � Mf � L p ( w )

  34. The C p class of weights cperez@bcamath.org The C p condition Recall the A ∞ theorem � T ∗ f � L p ( w ) ≤ c � Mf � L p ( w ) • Key observation:

  35. The C p class of weights cperez@bcamath.org The C p condition Recall the A ∞ theorem � T ∗ f � L p ( w ) ≤ c � Mf � L p ( w ) • Key observation: If p > 1 , Muckenhoupt proved that then w ∈ C p :

  36. The C p class of weights cperez@bcamath.org The C p condition Recall the A ∞ theorem � T ∗ f � L p ( w ) ≤ c � Mf � L p ( w ) • Key observation: If p > 1 , Muckenhoupt proved that then w ∈ C p : Definition w is in the C p class if there are constants c, δ > 0 such that

  37. The C p class of weights cperez@bcamath.org The C p condition Recall the A ∞ theorem � T ∗ f � L p ( w ) ≤ c � Mf � L p ( w ) • Key observation: If p > 1 , Muckenhoupt proved that then w ∈ C p : Definition w is in the C p class if there are constants c, δ > 0 such that � δ � � | E | R n ( Mχ Q ( x )) p w ( x ) dx w ( E ) ≤ C E ⊂ Q | Q |

  38. The C p class of weights cperez@bcamath.org The C p condition Recall the A ∞ theorem � T ∗ f � L p ( w ) ≤ c � Mf � L p ( w ) • Key observation: If p > 1 , Muckenhoupt proved that then w ∈ C p : Definition w is in the C p class if there are constants c, δ > 0 such that � δ � � | E | R n ( Mχ Q ( x )) p w ( x ) dx w ( E ) ≤ C E ⊂ Q | Q | • Compare with the A ∞ condition:

  39. The C p class of weights cperez@bcamath.org The C p condition Recall the A ∞ theorem � T ∗ f � L p ( w ) ≤ c � Mf � L p ( w ) • Key observation: If p > 1 , Muckenhoupt proved that then w ∈ C p : Definition w is in the C p class if there are constants c, δ > 0 such that � δ � � | E | R n ( Mχ Q ( x )) p w ( x ) dx w ( E ) ≤ C E ⊂ Q | Q | � δ � | E | • Compare with the A ∞ condition: w ( E ) ≤ c w ( Q ) E ⊂ Q | Q |

  40. The C p class of weights cperez@bcamath.org The C p condition Recall the A ∞ theorem � T ∗ f � L p ( w ) ≤ c � Mf � L p ( w ) • Key observation: If p > 1 , Muckenhoupt proved that then w ∈ C p : Definition w is in the C p class if there are constants c, δ > 0 such that � δ � � | E | R n ( Mχ Q ( x )) p w ( x ) dx w ( E ) ≤ C E ⊂ Q | Q | � δ � | E | • Compare with the A ∞ condition: w ( E ) ≤ c w ( Q ) E ⊂ Q | Q | • Hence:

  41. The C p class of weights cperez@bcamath.org The C p condition Recall the A ∞ theorem � T ∗ f � L p ( w ) ≤ c � Mf � L p ( w ) • Key observation: If p > 1 , Muckenhoupt proved that then w ∈ C p : Definition w is in the C p class if there are constants c, δ > 0 such that � δ � � | E | R n ( Mχ Q ( x )) p w ( x ) dx w ( E ) ≤ C E ⊂ Q | Q | � δ � | E | • Compare with the A ∞ condition: w ( E ) ≤ c w ( Q ) E ⊂ Q | Q | • Hence: A ∞ ⊂ C p

  42. The C p class of weights cperez@bcamath.org The C p condition Recall the A ∞ theorem � T ∗ f � L p ( w ) ≤ c � Mf � L p ( w ) • Key observation: If p > 1 , Muckenhoupt proved that then w ∈ C p : Definition w is in the C p class if there are constants c, δ > 0 such that � δ � � | E | R n ( Mχ Q ( x )) p w ( x ) dx w ( E ) ≤ C E ⊂ Q | Q | � δ � | E | • Compare with the A ∞ condition: w ( E ) ≤ c w ( Q ) E ⊂ Q | Q | • Hence: A ∞ ⊂ C p • Open problem, Is the C p condition sufficient?

  43. The C p class of weights cperez@bcamath.org The C p theorems

  44. The C p class of weights cperez@bcamath.org The C p theorems Thm (E. Sawyer, 1984) If p ∈ (1 , ∞ ) and w ∈ C p + ǫ

  45. The C p class of weights cperez@bcamath.org The C p theorems Thm (E. Sawyer, 1984) If p ∈ (1 , ∞ ) and w ∈ C p + ǫ � Tf � L p ( w ) ≤ c � Mf � L p ( w )

  46. The C p class of weights cperez@bcamath.org The C p theorems Thm (E. Sawyer, 1984) If p ∈ (1 , ∞ ) and w ∈ C p + ǫ � Tf � L p ( w ) ≤ c � Mf � L p ( w ) • The proof is a sophisticated version of Coifman-Fefferman’s A ∞ ’s proof

  47. The C p class of weights cperez@bcamath.org The C p theorems Thm (E. Sawyer, 1984) If p ∈ (1 , ∞ ) and w ∈ C p + ǫ � Tf � L p ( w ) ≤ c � Mf � L p ( w ) • The proof is a sophisticated version of Coifman-Fefferman’s A ∞ ’s proof • There is another interesting related result

  48. The C p class of weights cperez@bcamath.org The C p theorems Thm (E. Sawyer, 1984) If p ∈ (1 , ∞ ) and w ∈ C p + ǫ � Tf � L p ( w ) ≤ c � Mf � L p ( w ) • The proof is a sophisticated version of Coifman-Fefferman’s A ∞ ’s proof • There is another interesting related result If p ∈ (1 , ∞ ) and w ∈ C p + ǫ Thm (K. Yabuta, 1990)

  49. The C p class of weights cperez@bcamath.org The C p theorems Thm (E. Sawyer, 1984) If p ∈ (1 , ∞ ) and w ∈ C p + ǫ � Tf � L p ( w ) ≤ c � Mf � L p ( w ) • The proof is a sophisticated version of Coifman-Fefferman’s A ∞ ’s proof • There is another interesting related result If p ∈ (1 , ∞ ) and w ∈ C p + ǫ Thm (K. Yabuta, 1990) � Mf � L p ( w ) ≤ c � M # f � L p ( w )

  50. The C p class of weights cperez@bcamath.org The C p theorems Thm (E. Sawyer, 1984) If p ∈ (1 , ∞ ) and w ∈ C p + ǫ � Tf � L p ( w ) ≤ c � Mf � L p ( w ) • The proof is a sophisticated version of Coifman-Fefferman’s A ∞ ’s proof • There is another interesting related result If p ∈ (1 , ∞ ) and w ∈ C p + ǫ Thm (K. Yabuta, 1990) � Mf � L p ( w ) ≤ c � M # f � L p ( w ) • Recall that

  51. The C p class of weights cperez@bcamath.org The C p theorems Thm (E. Sawyer, 1984) If p ∈ (1 , ∞ ) and w ∈ C p + ǫ � Tf � L p ( w ) ≤ c � Mf � L p ( w ) • The proof is a sophisticated version of Coifman-Fefferman’s A ∞ ’s proof • There is another interesting related result If p ∈ (1 , ∞ ) and w ∈ C p + ǫ Thm (K. Yabuta, 1990) � Mf � L p ( w ) ≤ c � M # f � L p ( w ) M # f ( x ) = sup x ∈ Q 1 • Recall that � Q | f − f Q | | Q |

  52. The C p class of weights cperez@bcamath.org Recent extensions and improvements I: (with E. Cejas, I. Rivera-Rios & K. Li)

  53. The C p class of weights cperez@bcamath.org Recent extensions and improvements I: (with E. Cejas, I. Rivera-Rios & K. Li) Thm Let p ∈ (0 , ∞ ) and w ∈ C max { 1 ,p } + ǫ

  54. The C p class of weights cperez@bcamath.org Recent extensions and improvements I: (with E. Cejas, I. Rivera-Rios & K. Li) Thm Let p ∈ (0 , ∞ ) and w ∈ C max { 1 ,p } + ǫ � Tf � L p ( w ) ≤ c T,p,ǫ � Mf � L p ( w )

  55. The C p class of weights cperez@bcamath.org Recent extensions and improvements I: (with E. Cejas, I. Rivera-Rios & K. Li) Thm Let p ∈ (0 , ∞ ) and w ∈ C max { 1 ,p } + ǫ � Tf � L p ( w ) ≤ c T,p,ǫ � Mf � L p ( w ) • The case of multilinear Calder´ on-Zygmund operators we obtained results

  56. The C p class of weights cperez@bcamath.org Recent extensions and improvements I: (with E. Cejas, I. Rivera-Rios & K. Li) Thm Let p ∈ (0 , ∞ ) and w ∈ C max { 1 ,p } + ǫ � Tf � L p ( w ) ≤ c T,p,ǫ � Mf � L p ( w ) • The case of multilinear Calder´ on-Zygmund operators we obtained results Thm Let p ∈ (0 , ∞ ) and w ∈ C max { 1 ,mp } + ǫ

  57. The C p class of weights cperez@bcamath.org Recent extensions and improvements I: (with E. Cejas, I. Rivera-Rios & K. Li) Thm Let p ∈ (0 , ∞ ) and w ∈ C max { 1 ,p } + ǫ � Tf � L p ( w ) ≤ c T,p,ǫ � Mf � L p ( w ) • The case of multilinear Calder´ on-Zygmund operators we obtained results Thm Let p ∈ (0 , ∞ ) and w ∈ C max { 1 ,mp } + ǫ � T ( � f ) � L p ( w ) ≤ c �M ( � f ) � L p ( w )

  58. The C p class of weights cperez@bcamath.org Recent extensions and improvements I: (with E. Cejas, I. Rivera-Rios & K. Li) Thm Let p ∈ (0 , ∞ ) and w ∈ C max { 1 ,p } + ǫ � Tf � L p ( w ) ≤ c T,p,ǫ � Mf � L p ( w ) • The case of multilinear Calder´ on-Zygmund operators we obtained results Thm Let p ∈ (0 , ∞ ) and w ∈ C max { 1 ,mp } + ǫ � T ( � f ) � L p ( w ) ≤ c �M ( � f ) � L p ( w ) • Key point: the following pointwise inequality

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend