zeros and critical points of monochromatic random waves
play

Zeros and critical points of monochromatic random waves 06-18-2018 - PowerPoint PPT Presentation

Zeros and critical points of monochromatic random waves 06-18-2018 Yaiza Canzani The setting: ( M n , g ) compact Riemannian manifold, M = The setting: ( M n , g ) compact Riemannian manifold, M = Classical Quantum The


  1. Zeros and critical points of monochromatic random waves 06-18-2018 Yaiza Canzani

  2. The setting: ( M n , g ) compact Riemannian manifold, ∂ M = ∅

  3. The setting: ( M n , g ) compact Riemannian manifold, ∂ M = ∅ Classical Quantum

  4. The setting: ( M n , g ) compact Riemannian manifold, ∂ M = ∅ Classical Quantum T ∗ M L 2 ( M ) states

  5. The setting: ( M n , g ) compact Riemannian manifold, ∂ M = ∅ Classical Quantum T ∗ M L 2 ( M ) states | ξ | 2 hamiltonian ∆ g g ( x )

  6. The setting: ( M n , g ) compact Riemannian manifold, ∂ M = ∅ Classical Quantum T ∗ M L 2 ( M ) states | ξ | 2 hamiltonian ∆ g g ( x ) h t √ i ∆ g time evolution geodesic flow e

  7. The setting: ( M n , g ) compact Riemannian manifold, ∂ M = ∅ Classical Quantum T ∗ M L 2 ( M ) states | ξ | 2 hamiltonian ∆ g g ( x ) h t √ i ∆ g time evolution geodesic flow e steady states closed geodesics eigenfunctions ψ λ j

  8. The setting: ( M n , g ) compact Riemannian manifold, ∂ M = ∅ Classical Quantum T ∗ M L 2 ( M ) states | ξ | 2 hamiltonian ∆ g g ( x ) h t √ i ∆ g time evolution geodesic flow e steady states closed geodesics eigenfunctions ψ λ j

  9. The setting: ( M n , g ) compact Riemannian manifold, ∂ M = ∅ Classical Quantum T ∗ M L 2 ( M ) states | ξ | 2 hamiltonian ∆ g g ( x ) h t √ i ∆ g time evolution geodesic flow e steady states closed geodesics eigenfunctions ψ λ j

  10. Questions • # { critical points of Ψ λ } λ n • measure( Z Ψ λ ) λ � � • # components of Z Ψ λ λ n • topologies & nestings in Z Ψ λ

  11. Questions • S 2 Nicolaescu ’10 • # { critical points of Ψ λ } Cammarota-Marinucci-Wigman ’14 p − → A n λ n Cammarota-Wigman ’15 • measure( Z Ψ λ ) λ � � • # components of Z Ψ λ λ n • topologies & nestings in Z Ψ λ

  12. Questions • S 2 Nicolaescu ’10 • # { critical points of Ψ λ } Cammarota-Marinucci-Wigman ’14 p − → A n λ n Cammarota-Wigman ’15 • S 2 Neuheisel ’00, Wigman ’09, ’10 • measure( Z Ψ λ ) p − → B n λ � � • # components of Z Ψ λ λ n • topologies & nestings in Z Ψ λ

  13. Questions • S 2 Nicolaescu ’10 • # { critical points of Ψ λ } Cammarota-Marinucci-Wigman ’14 p − → A n λ n Cammarota-Wigman ’15 • S 2 Neuheisel ’00, Wigman ’09, ’10 • measure( Z Ψ λ ) p − → B n • T 2 Rudnick-Wigman ’07 λ � � • # components of Z Ψ λ λ n • topologies & nestings in Z Ψ λ

  14. Questions • S 2 Nicolaescu ’10 • # { critical points of Ψ λ } Cammarota-Marinucci-Wigman ’14 p − → A n λ n Cammarota-Wigman ’15 • S 2 Neuheisel ’00, Wigman ’09, ’10 • measure( Z Ψ λ ) p − → B n • T 2 Rudnick-Wigman ’07 λ � � • S n , T n • # components of Z Ψ λ Nazarov-Sodin ’07 ,’16 E − → C n λ n • topologies & nestings in Z Ψ λ

  15. Questions • S 2 Nicolaescu ’10 • # { critical points of Ψ λ } Cammarota-Marinucci-Wigman ’14 p − → A n λ n Cammarota-Wigman ’15 • S 2 Neuheisel ’00, Wigman ’09, ’10 • measure( Z Ψ λ ) p − → B n • T 2 Rudnick-Wigman ’07 λ � � • S n , T n • # components of Z Ψ λ Nazarov-Sodin ’07 ,’16 E − → C n λ n • S n , T n Sarnak-Wigman ’17 • topologies & nestings in Z Ψ λ C-Sarnak ’17

  16. Random waves: 1 � Ψ λ = a j ∼ N (0 , 1) a j ψ λ j iid (# { λ j = λ } )1 / 2 λ j = λ

  17. Random waves: 1 � Ψ λ = a j ∼ N (0 , 1) a j ψ λ j iid (# { λ j = λ } )1 / 2 λ j = λ 1 � Cov Ψ λ ( x , y ) = E (Ψ λ ( x )Ψ λ ( y )) = ψ λ j ( x ) ψ λ j ( y ) # { λ j = λ } λ j = λ

  18. Random waves: 1 � Ψ λ = a j ∼ N (0 , 1) a j ψ λ j iid (# { λ j = λ } )1 / 2 λ j = λ 1 � Cov Ψ λ ( x , y ) = E (Ψ λ ( x )Ψ λ ( y )) = ψ λ j ( x ) ψ λ j ( y ) # { λ j = λ } λ j = λ Let Ψ x 0 x 0 + u � � λ ( u ) := Ψ λ . λ

  19. Random waves: 1 � Ψ λ = a j ∼ N (0 , 1) a j ψ λ j iid (# { λ j = λ } )1 / 2 λ j = λ 1 � Cov Ψ λ ( x , y ) = E (Ψ λ ( x )Ψ λ ( y )) = ψ λ j ( x ) ψ λ j ( y ) # { λ j = λ } λ j = λ Let Ψ x 0 x 0 + u � � λ ( u ) := Ψ λ . λ Lemma Let x 0 ∈ S n or T n . Then, λ →∞ Cov Ψ x 0 lim λ ( u , v ) = Cov Ψ ∞ ( u , v ) , uniformly in u , v ∈ B (0 , R ) in the C ∞ -topology.

  20. Random waves: 1 � Ψ λ = a j ∼ N (0 , 1) a j ψ λ j iid (# { λ j = λ } )1 / 2 λ j = λ 1 � Cov Ψ λ ( x , y ) = E (Ψ λ ( x )Ψ λ ( y )) = ψ λ j ( x ) ψ λ j ( y ) # { λ j = λ } λ j = λ Let Ψ x 0 x 0 + u � � λ ( u ) := Ψ λ . λ Lemma Let x 0 ∈ S n or T n . Then, λ →∞ Cov Ψ x 0 lim λ ( u , v ) = Cov Ψ ∞ ( u , v ) , uniformly in u , v ∈ B (0 , R ) in the C ∞ -topology. Ψ ∞ : R n → R is a Gaussian field with 1 � e i � u − v , w � d σ S n − 1 ( w ) Cov Ψ ∞ ( u , v ) = (2 π ) n S n − 1

  21. Random waves: 1 � Ψ λ = a j ∼ N (0 , 1) a j ψ λ j iid (# { λ j = λ } )1 / 2 λ j = λ 1 � Cov Ψ λ ( x , y ) = E (Ψ λ ( x )Ψ λ ( y )) = ψ λ j ( x ) ψ λ j ( y ) # { λ j = λ } λ j = λ Let Ψ x 0 x 0 + u � � λ ( u ) := Ψ λ . λ Lemma Let x 0 ∈ S n or T n . Then, λ →∞ Cov Ψ x 0 lim λ ( u , v ) = Cov Ψ ∞ ( u , v ) , uniformly in u , v ∈ B (0 , R ) in the C ∞ -topology. Ψ ∞ : R n → R is a Gaussian field with 1 � e i � u − v , w � d σ S n − 1 ( w ) Cov Ψ ∞ ( u , v ) = (2 π ) n S n − 1 Heuristics: (∆ R n + lot ) Ψ x 0 λ = Ψ x 0 and ∆ R n Ψ ∞ = Ψ ∞ . λ

  22. Universality. 1 � Ψ λ = a j ∼ N (0 , 1) a j ψ λ j iid (# { λ j ∈ [ λ,λ +1) } )1 / 2 λ j ∈ [ λ,λ +1)

  23. Universality. 1 � Ψ λ = a j ∼ N (0 , 1) a j ψ λ j iid (# { λ j ∈ [ λ,λ +1) } )1 / 2 λ j ∈ [ λ,λ +1) 1 � Cov Ψ λ ( x , y ) = ψ λ j ( x ) ψ λ j ( y ) # { λ j ∈ [ λ, λ + 1) } λ j ∈ [ λ,λ +1)

  24. Universality. 1 � Ψ λ = a j ∼ N (0 , 1) a j ψ λ j iid (# { λ j ∈ [ λ,λ +1) } )1 / 2 λ j ∈ [ λ,λ +1) 1 � Cov Ψ λ ( x , y ) = ψ λ j ( x ) ψ λ j ( y ) # { λ j ∈ [ λ, λ + 1) } λ j ∈ [ λ,λ +1) Let Ψ x 0 x 0 + u � � λ ( u ) := Ψ λ . λ

  25. Universality. 1 � Ψ λ = a j ∼ N (0 , 1) a j ψ λ j iid (# { λ j ∈ [ λ,λ +1) } )1 / 2 λ j ∈ [ λ,λ +1) 1 � Cov Ψ λ ( x , y ) = ψ λ j ( x ) ψ λ j ( y ) # { λ j ∈ [ λ, λ + 1) } λ j ∈ [ λ,λ +1) Let Ψ x 0 x 0 + u � � λ ( u ) := Ψ λ . λ Theorem (C-Hanin ’15, ’16) Let x 0 ∈ M. If measure { geodesic loops closing at x 0 } = 0 , then λ →∞ Cov Ψ x 0 lim λ ( u , v ) = Cov Ψ ∞ ( u , v ) , uniformly in u , v ∈ B (0 , R ) in the C ∞ -topology.

  26. Universality. 1 � Ψ λ = a j ∼ N (0 , 1) a j ψ λ j iid (# { λ j ∈ [ λ,λ +1) } )1 / 2 λ j ∈ [ λ,λ +1) 1 � Cov Ψ λ ( x , y ) = ψ λ j ( x ) ψ λ j ( y ) # { λ j ∈ [ λ, λ + 1) } λ j ∈ [ λ,λ +1) Let Ψ x 0 x 0 + u � � λ ( u ) := Ψ λ . λ Theorem (C-Hanin ’15, ’16) Let x 0 ∈ M. If measure { geodesic loops closing at x 0 } = 0 , then λ →∞ Cov Ψ x 0 lim λ ( u , v ) = Cov Ψ ∞ ( u , v ) , uniformly in u , v ∈ B (0 , R ) in the C ∞ -topology. i.e, we get d Ψ x 0 λ ( u ) − → Ψ ∞ ( u ) .

  27. Universality. 1 � Ψ λ = a j ∼ N (0 , 1) a j ψ λ j iid (# { λ j ∈ [ λ,λ +1) } )1 / 2 λ j ∈ [ λ,λ +1) 1 � Cov Ψ λ ( x , y ) = ψ λ j ( x ) ψ λ j ( y ) # { λ j ∈ [ λ, λ + 1) } λ j ∈ [ λ,λ +1) Let Ψ x 0 x 0 + u � � λ ( u ) := Ψ λ . λ Theorem (C-Hanin ’15, ’16) Let x 0 ∈ M. If measure { geodesic loops closing at x 0 } = 0 , then λ →∞ Cov Ψ x 0 lim λ ( u , v ) = Cov Ψ ∞ ( u , v ) , uniformly in u , v ∈ B (0 , R ) in the C ∞ -topology. i.e, we get d Ψ x 0 λ ( u ) − → Ψ ∞ ( u ) . Random wave conjecture: ψ x 0 λ ( u ) has same statistics as Ψ ∞ ( u ) .

  28. Prior results and today’s talk • S 2 Nicolaescu ’10 • # { critical points of Ψ λ } Cammarota-Marinucci-Wigman ’14 p − → A n λ n Cammarota-Wigman ’15 • S 2 Neuheisel ’00, Wigman ’09, ’10 • measure( Z Ψ λ ) p • T 2 − → B n Rudnick-Wigman ’07 λ • S n , T n � � • # components of Z Ψ λ Nazarov-Sodin ’07 ,’16 E − → C n λ n • S n , T n Sarnak-Wigman ’17 • topologies & nestings in Z Ψ λ C-Sarnak ’17

  29. Prior results and today’s talk • S 2 Nicolaescu ’10 • # { critical points of Ψ λ } Cammarota-Marinucci-Wigman ’14 p − → A n λ n Cammarota-Wigman ’15 • S 2 Neuheisel ’00, Wigman ’09, ’10 • measure( Z Ψ λ ) p • T 2 − → B n Rudnick-Wigman ’07 λ • S n , T n � � • # components of Z Ψ λ Nazarov-Sodin ’07 ,’16 E − → C n λ n • ( M , g ) ∗ Sarnak-Wigman ’17 + C-Hanin ’15’16 • topologies & nestings in Z Ψ λ C-Sarnak ’17 + C-Hanin ’15’16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend